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Abstract

In the present work, we analyze classical mechanical systems with non-linear constraints in
the velocities. We prove that the d’Alembert—Chetaev trajectories of a constrained mechanical
system satisfy both Gauss’ principle of least constraint and Hoélder's principle. In the case of a
free mechanics, they also satisfy Hertz’s principle of least curvature if the constraint manifold is a
cone. We show that the Gibbs—Maggi—Appell (GMA) vector field (i.e. the second-order vector field
which defines the d’Alembert—Chetaev trajectories) conserves energy for any potential energy if,
and only if, the constraintis homogeneous (i.e. if the Liouville vector field is tangent to the constraint
manifold). We introduce the Jacobi—Carathéodory metric tensor and prove Jacobi—Carathéodory’s
theorem assuming that the constraint manifold is a cone. Finally, we present a version of Liouville’s
theorem on the conservation of volume for the flow of the GMA vector field.
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1. Introduction

The aim of this paperis to develop a geometric formulation of the dynamics of non-linearly
constrained mechanical systems based on Newton’s law.
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The constrained mechanical system is modeled by the following setup. We consider a
smooth finite dimensional manifold, called theconfiguration spacef the mechanical
system, and a smooth function KM — R, called thekinetic energywhich we assume
to be a positive definite quadratic form on each fiber ofublecity phase spacéM. By
polarization of this quadratic form on each fiberTdf, we obtain a smooth metric tensor
g on M, endowed of which it becomes a Riemannian manifold. The constraint is given by
a smooth embedded submanifdldf the tangent bundley : TM — M, such that the
restrictionty|¢c : C — M is a submersion. This is Marle[85] definition of a “regular
constraint”; other formulations of systems with non-linear constraints may be found in
[5,7,14,15,24,27-29,35-38,51-54mong othersC is called theconstraint manifoldor
simply constrain}. We say that the constraintlisear if C is a vector sub-bundle afM.

The linear constraint case is well known has an extensive literature ranging from classical
texts such ap4,20,43,55}0 papers using modern differential geomg8y1.1,18,25,26,31]
among others. A curve on M is amotionor trajectory compatible with the constrajrar
horizontalwith respect to the constraint, if itis differentiable and its velocity lieGatmost
everywhere on its domain. The dynamics of the mechanical system is given by a smooth
fiber bundle morphism (i.e. itis a smooth map and preserves fifer§M — T*M, called
theexternal force We say that the external ford&derives from a potentiad € F(M) if it

is of the formy, € TM = —dV(g) € T*M.

In the unconstrainectase, i.e. ifC = TM, we say that a curvg on M is amotionor
trajectory of the mechanical systai, K, F) if it is a solution ofNewton’s equatiof41]:

F(y) = n(Viy), )

whereV is the Levi—Civita connection of the Riemannian manifé¥dl g), V; the induced
covariant derivative on fields along the cuvandu = g° : TM — T*M the Legendre
transformation induced by the metric tensor. Using the notafios: (g°>) 1 : T*M — TM
andF* := g° o F (which we also calexternal forcg, we obtain the following equivalent
and more frequently used form efjuation (1)

FA§) = Vi, @

Taking vertical lifts on both members of the last equation, we olt&jryds) — H; (y) =
A,-,(]—“ﬁ(j/)), showing that the solutions () are theébase integral curve§.e. the projections
onM of its integral curves) of the second-order vector figld € ©1(TM) defined by, for
allv, € TM, X £(vg) = S(vg) +4y, (ﬁ(vq)), whereS is the geodesic spray @Y1, g). X ris
called theGibbs—Maggi—Appell vector fiel@lGMA) of (M, K, F)—this nomenclature was
suggested by Fusco and Olja8] in the context of linearly constrained mechanical systems.
Inthe general case, we definmationor trajectory of the constrained mechanical system
(M, K, F, C) as a curver onM which is compatible with the constraind which satisfies
Newton’s equation with reaction terfx

Viy = FH(i) + R(p) ®)

for some fiber preserving map : C — TM, called thereaction force fieldWe assume
thatR is anadmissibleeaction in the sense &fefinition 6, what ensures the existence of a
second-order vector field¥ onC (i.e. avectorfield(X : ¢ — TCsuchthalryoX¥ = idc)
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whose base integral curves are the solution@pfThis vector field is obtained by taking
vertical lifts on both members d&q. (3)

We show in the present work that a convenient chéice R of the admissible reaction
force mentioned above, through a rule which generalizes d’Alembert’s principle for linearly
constrained systems, leads to the so-catl&dembert—Chetaev mechanicbhis paper

focuses on the study of some properties of the flow of the vector K§ﬁd obtained by
this choice of the reaction force, called the GMéctor fieldof the constrained mechanical
system(M, K, F, C).

Historically, to the best of our knowledge, the first example of a mechanical system with
non-linear constraints in the velocities was proposed by AgBelwhich later has risen
some criticism, se39]). Since then, the theory for constraints that are non-linear in the
velocities has attracted the interest of both the mathematical and the physical communities. A
concrete example of a class of non-linear constraints which has been studied to some extent
is provided by the so-calladokinetic dynamici which the kinetic energy is constrained to
be constant. This example, first proposed by Hof®&}; finds many interesting applications
in non-equilibrium statistical mechanics (see, for exanip#23,45,56). Also, recently,
Cushman et al[13] realized a classical particle with spin as a rigid body constrained to
have a fixed value of the norm of the angular momentum. In a broad sense, a non-linear
constraint may be regarded as a control system—see the servomecExaisiple 1c).

In this case, the resulting reaction field provided by d’Alembert—Chetaev’s principle may
be understood as a non-linear control law which minimizes the strength of the reaction
field—seeExample 2

Nowadays, the field of non-linearly constrained mechanical systems remains an active
area of research and, as far as we know, many fundamental results that hold for an uncon-
strained or linearly constrained mechanical system, such as Liouville’s Theorem, had not
yet been established for non-linear constraints.

The organization of the paper is the following:$ection 2 we set up basic definitions
and notation, and we introduce a technique which will be used to enounce and prove the
results in a coordinate-free manner.

In Section 3we enounce and describe the main results of the paper.

In Section 3.1we define the concept afdmissible reaction fielébr a constrained me-
chanical systertM, K, F, C) and itsd’Alembert—Chetaev trajectorieEhese trajectories are
the solutions of Newton’s equations with reaction t€B)for a certain choice of the admis-
sible reactiorR that has remarkable properties. We also prove that the d’Alembert—Chetaev
trajectories of(M, K, F, C) satisfy Gauss’ principle of least constraint—sHeorem 1
As a corollary of the latter we obtain the so-called Gibbs—Appell form of the equations
[43].

In Section 3.1ve prove that if the external forcEderives from a potential ¢ F(M), the
d’Alembert—Chetaev trajectories also satisfy Hélder’s principldreorem 2 If the con-
straint manifold is a cone, they also satisfy Hertz's principle of least curvature in the case
of free mechanics—seEheorem 3 At this point we should mention that, except for some
minor modifications which occur in the various formulations of systems with non-linear
constraints, the d’Alembert—Chetaev trajectories and Holder’s principle are well known and
consolidated in the literature—sf®15,36,37] among others. However, the characteriza-
tion of these trajectories through Gauss’ principle of least constraint—interpreted here as
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a principle of “minimal reaction force’—and through Hertz's principle of least geodesic
curvature seems to be an original contribution.

In Section 3.3we deal with the conservation of energy property and conditions under
which the GMA vector field is Hamiltonian with respect to some Poisson structufe on

In Section 3.4we prove a version of Jacobi—Carathéodory’s theorem for constrained
mechanical systems, provided that the external force derives from a potentigf (1)
and that the constraint manifold is a cone.

Finally, in Section 3.5ve generalize Liouville’s theorem on the conservation of volume
for non-linearly constrained mechanical systems. We obtain, as by-products, the extension
of some results by Sasgki6,47]on the Riemannian metric on the tangent bundle.

In Section 4 we prove the main results.

2. Basic notations and definitions

In this section we set up the notation and basic definitions.

M will denote a smooth connected finite dimensional manifoM;(resp.T*M) denotes
the tangent (resp. cotangent) bundleMfandzy : TM — M, i} © T*"M — M the
associated projections. We denote the trivial bundle dtexith fiber F by Fy. In the
present work, “smooth” mear™. Following Helgasorf22], the set of smooth functions
on M, smooth vector fields oM and Pfaffian forms oM are denoted bg(M), ©1(M)
andily (M), respectively. Iftg : E — M is a smooth vector fiber bundle overthenOg
will denote the zero section &, that is,0Or = {0, : p € M}, with O, the zero vector of
E,= nEl[p], p € M. The set of smooth sectionsof : E — M is denoted by *°(E).

Inthe sequel, we recall some notions regarding the geometry of the tangent barafla
smooth vector bundIg overM (see, for exampli2,32]or[30]), which we will use later on.

Let E @y E denote the Whitney sum afz : E — M with itself. Thevertical lift is the
map” : E@v E — TE suchthat, forany € M, vy € Eg Ay =25 (vg, ) 1 Eg — Ty E
is the tangent map at, of the inclusionE, — E, using the canonical identification
Ty, (Eg) = E4. Thatis, for allw, € E4, we havevaq(w,,) = (T/df)|;=0(vg + twy).

The mapr £ is a smooth VB-monomorphism defined on the smooth vector bungle pr
E &v E — E whose image is theertical sub-bundl&/fer(E) = ker(Trg).

LetV : I'®(E) — I'™*(T*M ® E) (or V£, if there is a risk of confusion) denote a
connectiononng : E — M. That is,V is anR-linear map which satisfies the condition
that, for anyf € §(M) and anyo € I'*°(E): V(fo) =df ® o + fVo. The connectiorv
gives rise to a smooth VB-morphisnfH E &y TM — TE: for anyg € M, w, € E, and
vy € T4M, choose any smooth curye: (—¢, &) — M, t — y(1), such tha(Ty/df)|,—0 =
v,. Letr, (1) 1 E; — E, bethe parallel transport alongdefined by the connection. Then
the tangent vector at 0 of the smooth curve (—¢, &) — 7, (Hw, is independent on the
choice ofy—it depends only on the paip,, w,). We denote it by I{jl;(wq) = HE(v,, wy).
HE defines a VB-monomorphism of the smooth vector bundje: gf @y TM — E into
g . TE — E. Itsimage Ho(E) is thehorizontal sub-bundlénduced by the connection.
HE (v,, wy) is called thehorizontal lift of w, atv,, and is the unique vector at HQ(E)
which projects (througf ) to the vectow, € T,M.
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The smooth vector bundlg; : TE — E is the Whitney sum HaiE) &g Ver(E) of its
horizontal and vertical sub-bundles.

With aconnection we can define tbennectokg : TE — E,whichisaVB-epimorphism
fromzg : TE — Etong | E — M such that for eaclx,, € TE, kg(Xy,) € E,, is the
unique vector which satisfies:

Xy, = HUEq (Trg - Xo,) + A5 (ke - Xo,). (4)

Yq

Note that the restriction of the connector to the vertical bundle does not depend on the
connection, since it is the inverse of the vertical ;hft :Ver(E) - E, Xy, € Ver, E >
(g )t X,

The main significance of the preceding operators is that they allow us to work with objects
in M andE instead ofT E. For example, let : (—¢, ¢) — E be a differentiable curve and
y . (—&,6) — M be its projection oM, y = mg o u. Denoting byn = (Tu/dr) the
tangent vector field along, we havexg - 1 = V,u, whereV;, is the covariant derivative
alongy associated to the connecti®n Therefore, we have the following modified version
of Eq. (4) which will be extensively used:

u = Hy ) + 2y (Viu).
For the sake of simplicity, from now on we will omit thé&" from the notation, using H,
A, k instead of ¥, A£ and« g, respectively, whenever there is no risk of confusion.

2.1. The fiber and parallel derivatives

Letng : E— Mandng : F — N be smooth vector bunojles ovdrandN, respecEiver,
and letb : E — F be a smooth fiber bundle morphism over M — N. That is,b, b are
smooth maps such that the following diagram is commutative:

———q——)

E F
"EJ ) ‘"r
M 3 N_
The concept ofiber derivativeof b is well known (see, for exampld)); it is the fiber
bundle morphisnirs defined by
Fb: E — L(E,b*F), v, > Fb(v,),

whereb* F is the pull back vector bundle df by » and, for allw, € E,;:
d
Fb(vg) - wg = kp - Th by (wg) = —|  blvg +tw,) € Fy)
! dt t=0 1

where ¢'dr denotes the derivative of the curve> b(v, + twq) on the linear spacEl;(q).

Given connection& £ and V¥ on the vector bundlesz : E — M andnr : F — N,
respectively, we introduce in the following definition a dual concept to the fiber derivative
of b.
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Definition 1. The smooth fiber bundle morphiskb : E — L(TM, b* F) given by, for all
v, € Eandallz, € T,M:

Pb(vy) - 24 :=kF-Th- qu(zq) € Fg(q)
is called theparallel derivativeof b.

The idea of introducing these objects is to use the globally defined “partial derivatives”
Fb andPPb to compute the tangent map bf The following formulae will be extensively
used:

Trp-Th-X,, = Th-Trg - Xy,
kp-Tb- qu =Fb(vy) - kE - qu +Pb(vy) - Trp - qu,

so that, given a curvg in M and a differentiable sectiok of E alongy, we have
VEboX) =Fb(X) - VEX +Pb(X) - 7.

Besides, the connections on the vector bundleend F canonically induce a connection
on the smooth vector bundlg€ E, 5* F) overM. If a connection on the tangent bundi# is
given, we also have a canonically induced connectioh@M, b* F). Hence, we can take
the fiber and parallel derivatives of the smooth fiber bundle morpHi$ms — L(E, b* F)
andPb : E — L(TM, b*F), yielding smooth fiber bundle morphisms:

FFb: E — L(E,L(E,b*F)) = L(E® E, b*F),

PFb: E — L(TM, L(E, b*F)) = L(TM ® E, b*F),
FPb: E — L(E,L(TM, b*F)) = L(E @ TM, b* F),
PPb : E — L(TM, L(TM, b*F)) = L(TM ® TM, b*F).

Proposition 1. Giveny, € E, we have the following relations

1. F2b(vy) - (wg, zg) = F2b(vy) - (24, wy) for all wy, z, € Ey;

2. FPb(vy) - (wg, 2¢) = PFb(vy) - (z4, wy) for all w, € E;, z4 € TM;

3. P2b(v,) - (wy, 2g) = P?b(vy) - (24, wg) + Fb(vy) - RE (24, wy) - vy + RF(Th - w,, Th -
z¢) - b(vy) for all wy, z, € T,M, whereRE andR’ are the curvature tensors &~ and
VF, respectively

Finally, given f € §(E), we consider the smooth fiber bundle morphigmE — Ry,
defined byv, — (g, f(¢)). Let us endow the vector bundRy, with the trivial connection,
that is, defined bywe; = 0, wheree; : x € M — 1 € R,. Then, for allv, € E and
Xy, € Ty, E, we have

df(vg) - Xy, = KRy 'Tvq} - Xy, = IE‘}‘(Uq) KE - Xy, +]P)]C(vq) Trg - Xy,

We will omit henceforth the " from the notation, tacitly identifying/ with 7, and we
will employ this formula to compute £l
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2.2. The geometry of the constraint manifold

In this subsection, we give examples and describe some notation and some facts con-
cerning the geometry of the constraint manifold.

Definition 2 (Marle). AconstraintonM is a smooth embedded submaniféldf TM such

that the restriction t@ of the projection of the tangent bundtg : TM — M, henceforth
denoted byrc, is a submersion. The constraint is said tdibear if C is a smooth vector
sub-bundle offM; we use the symbdD to denote linear constraints.

The hypothesis oftc : C — M being a submersion ensures that, foradmissible
velocityv, € C, there exists a motion compatible with the constraint (—s, &) — M
whose initial velocityy(0) coincides withv,; this is a necessary condition for the existence
of second-order vector fields tangentttoTo check its validity, given, < C, the fact of
¢ . C — M being a submersion implies the existence of a local smooth sektfnz,,
defined on an open sktC M containingy and such thak (¢) = v,; anintegral curve of the
vector fieldX with initial conditiong is a motion compatible witlf with initial velocity v,,.

Giveng € M, we denote b¢, the embedded submanifoh@l[q] C T;,M. Thisisindeed
a submanifold off ;M, since it is a submanifold ofM (because it is a submanifold 6f
by the hypothesis at¢: : C — M being a submersion, argtis a submanifold offM) and
it is contained in the embedded submanifd}d of TM.

The following proposition is used in the construction of some examples.

Proposition 2. Let S be a smooth vector bundle ovit, f : TM — S a smooth fiber
bundle morphism and := f~1[Qs]. The following conditions are equivalent

(i) fis transversal to the null sectiols and ¢ : C — M is a submersiofiso thatC is
a constraint closed inTM);
(i) (Vvg € TMF f(vy) : T;M — S, is surjective

Example 1.

(&) The simplestexample of a constraintthatis notlinear is provided by an affine constraint.
In this case is an affine sub-bundle dfM: given a painD, X,), whereD is a smooth
vector sub-bundle anl, € ©1(M), we take, for ally € M, Cy =Dy + Xu(g).

(b) (Carathéodory). Lél = R?and denote by = (x1, x2) € R?the Cartesian coordinates
of the pointx € R? and byv = (v1, v2) € R? the corresponding velocity vector. Then,
we definef : TM — Ry by fi(v1, v2) = v — /1 + v2 and applyProposition 2

(c) (Marle’s[36] servomechanism). This example can be viewed as the model of a control
system formed by a rod on a vertical plane and an actuator which communicates motion
to its lower extremity along a fixed horizontal line, in order to manipulate the rod in a
certain way—see€ig. 1

We putM = Rx S*andf : TM = RZ, — Ry givenbyf(x, 6, &, 0) = i —h(x, 6, 0),
whereh : Ry — Risasmooth function. Then, applyifgoposition 2C := f*l[(O)RM]
is a constraint.
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Fig. 1. A servomechanism.

(d) (Isokinetic dynamics). Let > 0. We define the constraint applyiRgoposition 2with
f:TM — Ry given by f(vy) = (1/2)(vg, v4) — e, S€€[19,23,45,56]

(e) (Benenti's example). IiL7] a non-linear, quadratic homogeneous constraint in the ve-
locities is proposed. It requires that two points in the plane have parallel velocities to
each other. We pu¥/ = R4, and denoting by = (x1, x2, x3, x4) the combined Carte-
sian coordinates of the two points anddy= (v1, vz, v3, v4) € R* the corresponding
vector of the velocities, we define

v1

v2
fr(vg, v2, v3, v4) = det = VU4 — V2V3.

v3 V4

ThenC := f—1[<O)RM] \ OTm is acone That is to say, givem, € C, then(vz > O)ty, €

C. Note that it is necessary to remove the null sectiafy from f*l[QRM] (in other
words, we impose the additional condition that the velocities of the points cannot be
simultaneously null), in order faf to be a smooth submanifold M.

Sincene : C — M is a submersionJre : TC — TM is a smooth vector bundle
epimorphism; then keéfz¢ is a smooth vector sub-bundle €, denoted henceforth by
Ver(C), and called thegertical sub-bundlef TC. This sub-bundle isintegrable; indeed, for all
v, € C,we haveT, (C,) = Ver, (C). Giveny, € C,wecallC,, :=«"-Ver, (C) C T;Mthe
subspace of virtual velocitigfollowing the nomenclature 46]) atv,; C,, is the subspace
of T,M which is the image of the tangent mapugtof the inclusionC, — T,M.

Denoting by¢c : C — TM the inclusion;TC is a vector sub-bundle of the pull back vector
bundle;TTM, also denoted by TM|¢. Let us endow the vertical bundle \@M) with the
metric tensor induced by the metgcof M through the vertical lift, i.e. such thatv,
TM)Ay, : TyM — Ver,, (TM) is alinearisometry. Since V&) is a vector sub-bundle of the
pull backe; Ver(TM), it makes sense to consider the orthogonal sub-buiddé Ver(C) in
ic Ver(TM). That is to say, for alb, € C, W,,, 1= Ver,, (C)* is the orthogonal complement
of Ver,, (C) in Ver,, (TM). The vector bundlery : W — Cis called theprojection bundle
(W is the pull back by the Legendre transformatjonf Marle’s [35] projection bundleV
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overD := u(C) C T*M)onC, induced byy. Forally, € C, the restrictions of the vertical lift
atv, to Gy, and to its orthogonal complement are linear isometvieqs: Cy, — Ver,, (C)
andAvq : leq — Wy,. We denote the orthogonal projectioRgVl — Cy, andT,M — C,}q
by P(v,) andPt(v,), respectively.

By the construction oW, we have the Whitney sum decompositigiver(TM) =
Ver(C) &¢ W. Besides, we also have the Whitney sum given by the following proposi-
tion [35].

Proposition 3. In the above situatiorthe following Whitney sum decomposition holds
iB(TTM) = TCRW. (%)

We denote byP: and Py the projections on the first and second factqi&)frespectively.
Note that we have made use of the hypothesisbeing a submersion to construct the
above splittings oT TM|¢ and VeXTM)|c.

Let us now consider the Levi—Civita connectigrof (M, g), and the corresponding hori-
zontal sub-bundle HGTM) C TTM. We denote by HdL) the image byPc of (zHor(TM).
We call Hor(C) the horizontal sub-bundlef TC, induced byg, and we have the following
Whitney sum decomposition:

TC = Hor(C)? Ver(C). (6)

We denote b)Pf, : TC — Hor(C) and P‘C, : TC — Ver(C) the projections on the first and
second factor of6), respectively. Given, € C, we define the vertical and horizontal lifts
in TC, A5, = Ay, 0 Py, = Pcohy, : TyM — Ver, (©) and H = (TtmlHor, ) " =
PcoH,y, : T;M — Hor,, (C).

Note that, for ally, € C, HS @ T,M — Hor, (0) andA§ |c,, : C,
linear isomorphisms.

In the case of a linear constraift the Whitney sum decompositiqf) coincide with
the one induced by the connection Prdefined byv? : D1(M) x I'*(D) — I'*°(D),
V?Y :=Pp - VxY, wherePp : TM — D is the orthogonal projection. In that case, given
vg € D, A, and H) are the usual vertical and horizontal liftsugt and we have,, = D,
Wy, = A, (D), SO thatPp = TPp : TTM|¢ — D.

We define next the fiber and parallel derivatives for maps E, whererg : E — M
a smooth vector bundle, which preserve fibers. That is the case, for example, of the maps
P, PL:C— L(TM, TM).

. Vervq (C) are

Definition 3. Let 7 : E — M be a smooth vector bundle, endowed with a connection
VE andf : C — E asmooth map such that, for alle M, f(Cy) C E,. We define the
fiber derivativeF f : C — L(TM, E) and theparallel derivativeP f : C — L(TM, E) by,

for all v, € C:

Ff(vg) i= kg o Ty, [ o k5 € L(TyM, Ey),
. C
P f(vg) = kg o Ty, f o HS € L(TM, Ey).
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Therefore, given, € C andqu € Ty,C we have
KE - Tvqf : qu =Fflvg) -« - qu + P f(vg) - Trc - qu

andF f(vy) - & - Xy, = F f(vg) - Py, - k - X, 1.€.Cy C et f(vg).

By a previous observation, in the linear case these derivatives coincide with the fiber and
parallel derivatives defined in the previous subsection, endo®imgth the connection
vP.

As a final remark, givenf € F(TM), we use the notatiofi” f and P* f to denote,
respectively, the mapg’ o Ff : TM — TM andg? o Pf : TM — TM, whereg? is the
inverse of the Legendre transformatigh: TM — T*M induced by the metric tensgr

2.2.1. Second-order vector fields 6n

Definition 4. Given a constrainf ¢ TM, the subsef3(C) := TC N J?(M) of TC is called
holonomic prolongatiorf C (see[40]). Here,J2(M) := {z € T(TM)|ttmz = Tmm(z)} is
the 2-jets affine sub-bundle M.

The following proposition shows thgt(C) is an affine sub-bundle GfC.

Proposition 4. With the same notatiofiru |y c) : PB(C) — Cis asmooth affine sub-bundle
of TC. More preciselyfor eachv, € C, B, (C) is the affine subspad®: - S(v,) + Ver,, (C)
of T,,C, whereS is the geodesic spray oM, g).

Proof. We haveB(C) = TC N J2(M) = {Xy, € TC|Twm - Xy, = v4}. Hence, given
v, € CandX,, € Py, (), it follows thatTry - Xy, = vy = Twm - Pc - S(v,), therefore
Xy, — Pc - S(vg) € Ty,CN Ve, (TM) = Ver,, (C), that is to sayX,, € Pc - S(vg) +
Ver,,(C). On the other hand, givekivq € Pc - S(vg) + Ver,, (0), we haverq eT,Ce
Twm - Xy, = Tm - Pc - S(vg) = vg, thusX,, € Py, (C). We have then showi,, (C) =
Pe - S(vg) + Ver,,(C), for ally, € C. O

Definition 5. We say thaX € ©1(C) is asecond-order vector field ahif it is a section of
the holonomic prolongatiof§(C).

Note that, given a second-order vector fieldX € I'*° (B(C)), since(Vv, € O)Ty -
X (vg) = v, the integral curves ok are of the forni’y/dz, wherey is a smooth horizontal
curve onM.

3. Statement of the main results
In this section we state and describe the main results of the paper. We use the notation

from Section 2and, unless otherwise stated, we consider a fixed constrained mechanical
system(M, K, F, C).
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3.1. Gauss’ principle and the d’Alembert—Chetaev trajectories

In this subsection we define the d’Alembert—Chetaev trajectori€doK, F) through
Gauss’ principle of least constraint. Firstly, we introduce the conceqatimissible reaction

Definition 6. We say that a continuous map: C — TM is anadmissible reaction field
for the constrained mechanical systél, K, F, C) if it is fiber preserving and if there
exists a second-order vector fiquf onC whose maximal integral curves with fixed initial
condition exist and are unique, and whose base integral curves are solutions of Newton’s
equation with reaction terrg8).

We denote byR the set of all admissible reaction fields o, K, F, C). If R € R, we
call the base integral curves ﬁ‘f(’f thetrajectoriesof the constrained mechanical system
(M, K, F, 0), induced by the admissible reacti@&n

Remark 1. Note that, if R is an admissible reaction field f@gM, K, F, C), thenxg is
univocally determined by. In fact, taking vertical lifts in(3), it follows thatX§ must be
given by

S(vg) + Mo (F(vg) + R(vy)}, )

wheresS is the geodesic spray oM, g).

Proposition 5. The admissible reaction fields fgM, K, F, C) are the continuous fiber
preserving mapg® : C — TM which satisfyfor all v, € C:

Py - (R(vg) = =« - Py - S(vg) = Py - (F(vg) ®)
and such that the uniqueness and existence property holds for the integral curves of the
vector fieIdXé?, where W is the projection bundle ¢n

Proof. It is enough to check that, given a continuous fiber preserving hag — TM,
X&) c TCif, and only if, Eq. (8)holds (wherex5 is given byEq. (7). Indeed, given
vy € C, X8y € Ty, Cif,and only if 0= k- Py - XB(vy) = k- Pw - ho, (F*(vg) + R(vy)) +
k- Pw - Hy,vg, What is equivalent t&q. (8) O

At this point we should note that there are, in general, many possible choices for the
admissible reaction force. In a “physical” constraint, however, one could reasonably ex-
pect that the reaction should be determined by the external force and that each motion of
the system be uniquely determined by its initial velocity. The reason why this does not
happen in our model is the fact that, what we call “constraint” is, in fact, a “kinematic
constraint”. A “physical” constraint is characterized not only by kinematic constraints, but
also by a “dynamical” or “phenomenological” [§#]—something that in our model would
correspond to a rule to determine the admissible reaction field. To illustrate this fact, we
show two admissible reactions for the constrained mechanical system of the example of the
servomechanism.
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Example 2. In the example of the servomechanisBxample 1c)), let us consider:
K(x, 6, %, 0) = 2mi® + 3(I + mPcos?0)8?,  V(x,6) = mglsine,

wherem is the mass of the rod, the moment of inertia of the rod with respect to its
barycentre/ the distance from the articulation with the actuator on @eaxis to the
barycentre of the rod anglthe acceleration of gravity. For the sake of simplicity, let us put
m=I1=1=g=1.

A direct computation shows that the following maps are admissible reactions for
(M, K, V, 0):

- Fh(0) cosd Ph(d) - (x,0) ~
RA(x, 0, %,0) = : : 3, — Fh(0)d
(x. 6, %, 6) ((1+Fh(0)2)(1+ cos?0) 1+Fh(9)2)( %)
and
_ . (Fh() cosd i
R(x,0,x,0) = (—1+ o520 + Ph() - (x, 9)) Oy

The reactionR”* has minimal intensity among all admissible reaction fields; the solutions
of Newton’sequation (3)with reaction termk4 are the d’Alembert—Chetaev trajectories

of the constrained mechanical systéh, K, V, C) (seeTheorem landDefinition 8). The
reactionR, on the other hand, is the admissible reaction which corresponds to the physical
hypothesis of the articulation being frictionless and of the actuator introducing no torque
on the articulation (i.eR has no term irby).

LetXr: TM — T(TM) be the GMA vector field of the unconstrained mechanical system
(M, K, F) (i.e. the second-order vector field whose base integral curves are the solutions of
Newton’sequation (2). That is to sayXr : vy, € TM = S(v,) + Avq{]-'ﬁ(vq)}. Using the
Whitney sum decompositioRnTM|c = TC &¢ W, the restriction ofX £ to the constraint
manifoldC splits into a sunX £|¢c = X¢ + Xw, whereX¢ is a smooth second-order vector
field onC and Xy a smooth section of the projection bundiie

Definition 7. Using the notation above, we call the second-order vector Xeld ©1(C)
the Gibbs—Maggi—Appell (GMA) vector field of the constrained mechanical system
(M, K, F,0).

We show inTheorem 1that the GMA vector field ofM, K, F, C) is induced by an
admissible reactio®” that has the remarkable property of minimizing the intensity of the
admissible reactions.

3.1.1. Gauss' principle of least constraint

For a linear constrainD, there exists a unique admissible reactiéf : D — T™M
satisfying the so-called “d’Alembert’s principle”. That is to s&/ is orthogonal to the
constraint, in the sense thatv, € D)R% (vy) L D, i.e. (Ywy € Dy) (R (vy), wy) = 0.

On the other hand, it can be easily checked thatjsfa non-linear constraint, in general
there is no admissible reaction satisfying the above condition, i.e. orthogonal to the constraint
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manifold on each fiber of M. However, we prove in the next theorem that there exists a
unigue admissible reaction satisfying Gauss’ principle of least constraint, in the sense that
it has minimal intensity among all admissible reaction fields. If the constraint is linear,
this admissible reaction coincides with that given by d’Alembert’s principle; in this sense,
we can consider Gauss’ principle of least constraint as a generalization of d’Alembert’s
principle for constraints which are non-linear in the velocities.

Theorem 1 (Gauss’ principle of least constraint].here exists a unique smooth admissible
reaction fieldR* € R such thatfor all v, € C:

A _ .
IR™ (o)l = min IR(vg) - )

Moreovet the solutions of Newton’s equati¢B) with reaction termrR4 coincide with the
base integral curves of the GMA vector fistg—in particular they are smooth-i.e. X¢

coincides with the second-order vector fié:rgA induced by the admissible reacti®t.

Definition 8. The base integral curves of the GMA vector figdd (or, equivalently, by the
previous theorem, the solutions of Newtoatguation (3with reaction termR4) are called
thed’Alembert—Chetaev trajectories @1, K, F, C).

3.1.2. Gibbs—Appell equations

To close this subsection, we show that the d’Alembert—Chetaev trajectories are solutions
of the so-calledsibbs—Appell equationgl3] of the mechanical system.

We define theSasaki metric tensogry on TM (see[46,47,57) by, for all v, € TM,
Xop Yo, € TgMi (X, Yo )7, TM = (K- Xopo k- Vo )T,m 4 (Tam - Xy, Tom - Yo dT,ms
wherex : TTM — TM is the connector induced by the Levi—Civita connectioriMf g).
With this metric the horizontal and vertical spaces are orthogonal to each other. With the

Sasaki metrigmy, we define the Gibbs—Appell function ¢, K, F).

Vg

Definition 9. Given a mechanical syste@, K, ), we define itsGibbs—Appell function
6 : TTM — R (see[34,43) by, for all X, € TTM:

B(Xy,) = (hy, (=F*(v9)) + 5(Xy, — S(vg)), Xy, = S@W)T,, ™,

whereS is the geodesic spray oM, g).
The following proposition is a corollary froiheorem 1

Proposition 6 (Gibbs—Appell). The GMA vector fiel& ¢ is the unique second-order vector
field onC such thaton each fiberp,, (C) of the holonomic prolongation d, v, € C,
minimizes the Gibbs—Appell functigh That is to sayfor all v, € C, we have

B(Xc(vy) = min  &(Xy,).
Xug €Puy (©)
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3.2. Holder’'s and Hertz's principles

In this subsection we show that, if the external foEelerives from a potential \&
F(M), the d’Alembert—Chetaev trajectories @¥, K, V, C) satisfy Holder's principle—
Theorem 21In thefree mechanicsase (i.eF = 0), if the constraint is a cone, they also
Hertz's principle of minimal geodesic curvatur&heorem 3

3.2.1. Hédlder’s principle

We assume in this subsection that the external f¢faef the constrained mechanical
system derives from a potential & (M), and we define the Lagrangian TM — R by
L(vy) :=K =V oy.

Hélder’s principle—Theorem 2—will be stated in terms of some Banach manifolds which
we describe below.

3.2.1.1. Some spaces of curve§ivenk > 0 and a closed intervak][b] C R, we denote

by CK(M, [a, b]) the set of all curvey : [a, b)) — M of classC*. Fork > 1, we denote

by H¥(M, [a, b]) the set of all curvey : [a, b] — M of classH* (a curvey : [a, b] — M

is of classHF if, taking a smooth embedding M — R", whose existence is ensured by
Whitney’s theorem; o y is a curve of classl* in RV, that is to say, it is absolutely contin-
uous and its derivative belongst§—1, with HO = L2; for k > 1, this definition does not
depend on the choice of the embedding). If the interwab] is fixed and there is no risk of
confusion, we use the abbreviated notati6AgM) andH* (M) instead ofC*¥(M, [a, b]) and
HK(M, [a, b)), respectively. These sets (for= 0 in theCF case, an@ > 1 in theH case)
admit Banach manifold structures (i.e. smooth manifolds modeled on Banach spaces, see
[32,33]or [2], for example) naturally defined—s§gE7,21,42,44or [16]. More precisely,

the spaceH", k > 1, admit Hilbert manifold structures. Such smooth manifold structures
are such that, given a proper smooth embeddinl — R" (which exists, by Whitney’s
theorem), then the applicati@r) : y — i o y is a smooth embedding & (M) (respec-
tively, H*(M)) into the Banach spad@* (R") (respectively, into the Hilbert spaé# (RV))
andC*(M) is closed inC*(RY) (respectivelyH* (M) is closed inH*(RV)). This property
determines univocally the smooth manifold structure€tfM) andH*(M). In particular,

the manifoldsC*(M) andH* (M) are metrizable (hence, paracompact) and separable. The
inclusionsC*(M) — HK(M) — C¥1(M), k > 1, are smooth and have dense images.
Besides, given a finite dimensional smooth manifdlend a smooth map : M — N, the
map(¢o) : y — ¢ o y is smooth fromC¥ (M) (respectivelyH* (M)) with values inC¥(N)
(respectivelyH* (N)). For ally e C¥(M) (respectivelyy € H¥(M)), the tangent space at

is the set of all sections @M alongy of classCF (respectively, of classl®), that is to say:

T,CEM) = C*(*TM) = (X € CK(TM)|oy 0 X = )

and similarly forT, H*(M). Hence, the tangent bundleg: y, : TC* M) — Ck(M) and
Theaw) - TH*(M) — H¥(M) are naturally isomorphic to, respectivetyyo) : CK(TM) —
CK(M) and(zyo) : HY(TM) — H¥(M).

More generally, given a smooth finite dimensional vector bundgle: £ — M, we
have smooth vector bundlgs ;o) : CX(E) — C¥(M), for k > 0, and(rgo) : HX(E) —
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HK(M), for k > 1. These constructions are functorial, that is, given a smooth vector bundle
morphismg : E — F over$ : M — N, we obtain smooth vector bundle morphis¢ps) :
CK(E) — CK(F) over(¢o) : CK(M) — Ck(N), for k > 0, and(¢o) : HK(E) — HX(F)
over(¢o) : H*(M) — H¥(N), fork > 1.

3.2.1.2. The initial and the endpoint mappingdVith the notation described above, let
k > 0 and let us consider the map,; : CK(M) — M defined byy — y(a), called
theinitial point mapping This map is clearly smooth: taking a smooth embeddihg>

RY given by Whitney’s theoremev; : CK(RV) — R is linear continuous, hence its
restriction to the embedded submanif6i{M) is smooth and takes values in the embedded
submanifoldv  RY. Moreover, its tangentmapgate C*(M)isgivenbyX € T,C*(M) =
CH(y*TM) = X(a) € T,»M, which is clearly surjective, and its kernel splits (i.e. admits
a closed complementary subspace), since it has finite codimens:fg)ﬁ:(‘r(M). Hence, we
have shown thagv; is a smooth submersion. Givgne M, its inverse imagevjl[p] is

a closed embedded submanifold@f(M), which we denote henceforth I8 (M, p), and

its tangent space ate C*(M, p) is given by{X € Tka(M)|X(a) = 0}

We can apply the same arguments we have used for the initial point mapping to conclude
that theendpoint mapping & : CK(M) — M, y — y(b), is also a smooth submersion.
Givenp € M, the restriction obv ; to the embedded submanifa@ (M, p) is still a smooth
submersion, by the same arguments; the inverse image by this last gnap\dis a closed
embedded submanifold 6 (M, p), which we denote bZ* (M, p, g). The tangent space
aty € CK(M, p, g) is given by{X € T,CK(M)|X(a) = 0, X (b) = O}.

All that we have done for th€* case also applies to the Sobolev spadésfor k > 1:
we use the same notation for the initial and endpoint mappings, and we have corresponding
closed embedded submanifold§(M, p), H*(M, p, ¢) € H*(M), givenp, ¢ € M.

3.2.1.3. Hélder's principle. In Theorem 2we denote byH(C;, [a, b], y(a), ¥(b)) the
closed linear subspace'ﬁl}Hl(M, [a, b]) formed by the infinitesimal variationse T),H1
(M, [a, b], y(a), y(b)) such that, for alt € [a, b], n(¢) is a virtual velocity aty(r) € C, i.e.
HY(C}. [a. b]. ¥(@), y(b)) := {n € T,H (M, [a, b]. y(@), y(b))In(1) € Cy() ae.on[a, b]}.

We consider théagrangian functional : y — fa” L(y) induced by L as a smooth map
H(M, [a, b]) — R. The smoothness & onH (M, [a, b}l) follows from the fact that is
the difference of the smooth mapse HY(M, [a, b]) + [ (7, ) andy € HY(M, [a, b])
fub V o y. The second of these maps is smooth, since it can be written as the composition
of smooth maps(f(f) o (Vo), where(Vo) : HY(M, [a, b]) — HL(R, [a, b]) and (fab) ;
HL(R, [a, b]) — R. On the other hand, to check the smoothness afHL(M, [q, b])
ff(;‘z, 7), take an isometric embeddirily, g) — R, for sufficiently largeV, which exists
by Nash—Moser’s theorem; thenc HL(R", [a, b]) — ||;'/||E2 is obviously smooth, and so
is its restriction to the embedded submanifelit{M, [a, b]).

Theorem 2 (Holder’s principle). A horizontal curvey € H2(M, [a, b]) is a d’Alembert—
Chetaev trajectory of the constrained mechanical sysnK, V, C) if, and only if dZ(y)
annihilates the subspade!(C;, [a, b], y(a), y(b)) of T,HX(M, [a, b]).
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Remark 2. In [49] we have constructed Banach manifold structures on the spaces of hor-
izontal curvedH (M, C, [a, b]) := {y € H*(M, [a, b])|y is horizonta), for k > 2 (and also
onC¥(M, C, [a, b]) := {y € CX(M, [a, b])|yis horizonta}, for k > 1), and then we have
defined thevariational trajectoriesof the constrained mechanical system as critical points
of the Lagrangian functional on these Banach manifolds of horizontal curves. For lin-
ear constraints, its well known (s§s, for instance) that these trajectories coincide with
the d’Alembert—Chetaev trajectories (which, in the linear case, coincide with the classical
d’Alembertian trajectories of the constrained mechanical system, i.e. the trajectories defined
by d’Alembert’s principle) if, and only if, the constraint is integrable (i.e. they coincide only
for holonomicconstraints). We have generalized this condition for the general (non-linear)
case in49].

3.2.2. Hertz's principle
We recall that, given a curve on M, its geodesic curvature, () atr € domy is given
by || V=07 |l, wherey is a reparametrization by arc lengthyoivith 3 (0) = y(r) (se€[48]).
The theorem that closes this section states that, in the case of a free mechanics (i.e. if the
external forceF is null), if the constraint manifold is acone(i.e. v, € C implies (vt >
O)tv, € C) the d’Alembert—Chetaev trajectories@f, K, 0, C) satisfy Hertz's principle of
least geodesic curvature. That is to say, except for reparametrizations, a horizontal curve
is a d’Alembert—Chetaev trajectory @1, K, 0, C) if, and only if, for each on its domain,
its geodesic curvature afs the greatest lower bound of the set of the geodesic curvatures
atr of all horizontal curves defined on a neighborhood afid with the same velocity at

Y ().

Theorem 3 (Hertz's principle of least curvatureAssume that the constraint manifalds
a cone and lety be a horizontal curve oM. Then there exists a reparametrization;of
which is a d’Alembert—Chetaev trajectory @, K, 0, C) if, and only if for all € domy:

Ky (1) = Min{ky (0)|e : (—¢, &) = Mhorizontalwith &(0) = y(¥)}.
3.3. Conservation of energy

It is a well known fact that, for a linearly constrained mechanical systdnK, V, D)
on which the external force derives from a potentiakVg (M), the mechanical energy
Ec :=K]¢+V on¢is afirstintegral of the flow of the GMA vector fieldp—see[41]. It
is then natural to inquire under which conditions the same occurs for a general (non-linear)
constraintC. We show inProposition 7 that this is a characteristic of homogeneous con-
straints, in the sense of the following definition.

Definition 10. We say that a constraitt C TM is homogeneous the Liouville vector
field Z € ©Y(TM) (i.e. the vector field oM defined byv; € TM = Ay,v, € TTM) s
tangent tcC.

Example3. If Cis acone(i.e. if v, € Cimplies(Vr > O)tv, € C), then itis a homogeneous
constraint. Linear constraints and also the constraint fEsample 1e) are cones.
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Proposition 7. Let (M, g) be a Riemannian manifol : TM — R the kinetic energy
induced by andC ¢ TM a constraint. The following conditions are equivatent

(i) forall potentialV € §(M), the mechanical energ§c = K|c+V on¢is afirstintegral
of the flow of the GMA vector fieldy;
(i) Cis a homogeneous constraint

We note thatthe implication (i (i) was already known in formulations slightly different
from ours—se¢10,15,35,51]

As a corollary, we show that, for fixad, K, C), with C closedn TM—as is the case of a
constraint given byProposition 2-then the GMA vector field of the constrained mechanical
system(M, K, V, C) conserves the mechanical energy for all potentials §(M) if, and
only if, Cis a linear constraint.

Corollary 1. With the same hypothesitCis closed iniTM, both conditions in the statement
of Proposition 7are equivalent t& being a linear constraint

Finally, the following corollary follows from the previous corollary and fr¢&2,50]
We recall that a Poisson bracKet-} onC is anR-bilinear anti-symmetric form of§(C),
satisfying both Jacobi’s identity (i.e. turnir§(C) a Lie algebra ovelR) and Leibniz’s
identity (i.e.,{-, -} is a derivation on the second factor).

Corollary 2. With the same notatignhe following conditions are equivalent

1. (C, {-,-}) is a Poisson manifoldclosed inTM, and for all ¢ € §(C) of the form¢ =
Klc +V ome, V € F(M), the GMA vector field(¢ of (M, K, V, C) coincides with the
Hamiltonian vector field§ induced byp., i.e. £5[] = {y, ¢}, for all ¥ € F(C);

2. C a completely integrable smooth vector sug—bundl?e*kzlf i.e. itis a holonomic con-
straint

See alsd10], where an “almost-Poisson” bracket is constructed for systems with non-
holonomic constraints.

3.4. The Jacobi—Carathéodory metric tensor

Given an unconstrained mechanical sysi@émK, V), with the external force deriving
from a potential Ve §(M), itis well known the “Jacobi—Carathéodory theorem”: éor O
such that V< e on M, this theorem allows, through the introduction of a convenient metric
tensor orM (the so-called Jacobi—Carathéodory metric tegspseeDefinition 11) reduce
the study of the trajectories ¢, K, V) with energy K+ V o 1y = const = e to the study
of the geodesics of the Riemannian manif@id, g.) with energy 1—seél].

We assume, throughout this subsection, that the constraint madifi@da cone. In
particular,C is homogeneous, i.e. the Liouville vector figtde ©1(TM) is tangent ta. It
then follows fromProposition %that, for all potentials Ve (M), the mechanical energy
Kl¢ + V o 7¢ is conserved by the flow of the GMA vector field @1, K, V, C). In this
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subsection we generalize the Jacobi—Carathéodory theorem for a constrained mechanical
system of this type—seEheorem 4

Definition 11. With the above notation, assume that there exsts 0 such that, for all
q € M, V(q)e. We define thelacobi—Carathéodory metric tenson M by

ge = (e —V)g. (10)

Theorem 4. With the above notatigtet y : [a, b)] — M be a smooth horizontal curve such
thatK(y) + V o y = const = e and lety : [0, L] — M be the reparametrization by arc
length ofy inthe Jacobi—Carathéodory metrig. Denote by, the kinetic energy associated

to g.. Theny is a d’Alembert—Chetaev trajectory of the constrained mechanical system
(M, K, V, 0 if, and only if ¥ is a d’Alembert—Chetaev trajectory of the free constrained
mechanical systertM, K., 0, C).

As a corollary from this theorem and froffheorem 3we obtain the following.

Corollary 3. With the same notatigrithere exists a reparametrization ¢f which is a

d’Alembert—Chetaev trajectory of the constrained mechanical sy@rq, V, C) if, and

only if, it minimizes the geodesic curvature in the Jacobi—Carathéodory miettize sense
that, for all + € domy:

Ky (1) = Min{ky (0)|e : (—¢&, &) = Mhorizontalwith &(0) = y (1)},

where the geodesic curvaturesire taken with respect to the Jacobi—Carathéodory metric
tensor

3.5. The Liouville’s theorem for the Gibbs—Maggi—Appell vector field

In this subsection, we fix a Riemannian manif¢h, g) and a constrainf ¢ TM. We
denote by K the kinetic energy induced by the metric tegs@ur aim, in this section, is
to generalize to the context of constrained mechanical systems the celebrated Liouville’s
theorem on the conservation of volume: for all potentials ¥ (M), the flow of the GMA
vector fieldXy of the (unconstrained) mechanical syst@mh K, V) preserves the Liouville
volume—i.e. the volume form oM induced by the Sasaki metric tenggaiy defined in
Section 3.1.2

Firstly, we define a metric tensor @hthrough a construction which generalizes that of
the definition of the Sasaki metric tensor BHl.

Definition 12 (The Sasaki metric tensor @f). The Sasaki metric tensoor, simply, the
Sasaki metrion C is the unique metric tens@g on C such that, for alb, € C, A§q|cuq :

Cy, — Ver,, (C) and I-Eq : TyM — Hor,,(C) are linear isometries.

Thus, endowing’ with the metric tensoge, we have Ho(C) = Ver(C)* and, for all
vy €C, Xy, Yy, € Ty, C:
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gC(qu» qu) =(Py - quv Py - Yv,,)Horgq + (Py - qu, Py - YUq>Verfq
= (Tre - Xoys T - Yo ) + (P(g) - k- Xops P(vg) - - Yoy).

Note that, in the unconstrained case, i.€. # TM, the Sasaki metric tensor @rcoincides
with the one previously defined Bection 3.1.2

The smooth map given by the following definition has an important role in the general-
ization of Liouville’s theorem.

Definition 13. We denote byA : C — L(TM, TM) the smooth map defined by, for all
vy € C, A(vg) '= ko PcoH,, : T;M — T,M, wherex is the connector induced by the
Levi—Civita connection ofM, g).

Remark 3. For a linear constrainD, a direct computation shows that the mapf the
previous definition is given by, for all, € D, A(v,) = Bp(v,), whereBp : TM @&y D —
D isthetotal second fundamental form@f, g, D)—sed31]—andBp(v,) = Bp(-, vy) :
™™ — Dj. In this sense, the map of the previous definition plays the role, in the
non-linearly constrained case, of the total second fundamental form.

Note that, for allu, € C, we haveA (vy) = —« o Py o Hy,, hence IMA(v,) C C;-. This
follows from the following facts: (1 o H,, = 0 and (2)P¢ + Pw = idi;(TTM)- Besides,
givenX,, € T, TM, we haveX, € T, Cif, and only if:

Ph(vg) k- Xy, = Avg) - Tom - X, (11)

Indeed, the last equation is clearly equivalent taPy - X,, =0 & Py - X,, = 0.

In order to enunciat&heorem 5we shall make use of the following notation.

Notation.Giveng € M, v, € C; andw, € T,M, we denote b¥*P(v,) - w, the adjoint
map ofFP(v,) - wy : T,M — T,M with respect to the metric tensor. This defines the map:
F*P:C— L(TM,L(TM, TM)) = L(TM ® TM, TM).

The main result of this subsection is the following theorem.

Theorem 5. The Lebesgue measure 6induced by the Sasaki metrig is preserved by
the flow of the GMA vector fielmg of the constrained mechanical systévh K, V, C), for
all potentialsV € §(M), if, and only if the two following conditions are fulfilledor all
vy €C

(i) tr A(vy) =0;
(i) tr F*'P(vqﬂcvqxcvq =0.

The proof of this theorem is based on the computation of the Levi—Civita connection of
(C, gc) with respect to a convenient moving frame and of the divergence of the GMA vector
field; as a by-product of these computations, we generalize a resulf4&jironcerning the
geodesics of the Sasaki metric—s$&eposition 80ther secondary results aerollary 4
which gives a necessary and sufficient condition for the integrability of the horizontal
sub-bundle off C, andCorollary 5 which states that, if conditions (i) and (ii) itheorem 5
are fulfilled, then, for eacly € M, C, is a minimal surface ofC, g¢). That is to say, a
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necessary condition for the Lebesgue measur€ orduced by the Sasaki metric to be
preserved by the flow of the GMA vector fiel!d}/,’, for all potentials Ve F(M), is that
(C, g¢) admit a regular foliation by minimal surfaces.

Example 4. Conditions (i) and (ii) ofTheorem 5are satisfied by the constraint from
Example 1e). Indeed, in this example we haw:= R4, (Vx € M)Cy = {(v1, v2, v3, va) €

Rﬁ \ {(O)x}|det( z; Zj) = 0}. We use the following notation: givan= (v1, vz, v3, v4) €

R*, we put|? := (va, —v3, —v2, v1) andv’ ;= (—vo, v1, —va, v3). For allv, = (x, v) € C,
we haveC;- = [7] ¢ T.M =R}, C,, = [J]*, Wy, = 4,,C;. =[(0,0),,] C T,,TM =

R* x RY,,, T,,.C = {Yy, = (Y1, Y2),, € T,,TM|Y2 € C,, = [T;]*}. Hence, for all
x € M, vy, wy € Cy:

A(y)  wy = —k - Py - Hy wy = —« - Py - (w, 0)y, =0,

S0A = 0, i.e. condition (i) is trivially fulfilled.
On the other hand, a direct computation shows that, for alM, vy € Cy, wy, s, € Cy,:

* = FX)
F*P(vy) - (wy, sx) = —(Sy, wx>—2-
llvxll
Therefore
— —
FP,) - (wy, wy) = —(w,, T)— = —2det| 1 ")
[lvxll wz wa ] vl

Using the last formula and the orthonormal basig ||v||), (v'/||v]), (7/||v||)) of C,, =
[v7]*- to computeF*P(vy)|c,, xc,, » We conclude that condition (ii) holds, as asserted.

Remark 4.

(a) Note that, for alinear constraif conditions (i) and (ii) fronTheorem fare equivalent
to the condition derived if31] for the conservation of the local volume form defined
there, i.e. tothe condition B, (¢)| L, p. = Oforallg € M, whereBp : TM&uD —
D+ is thetotal second fundamental form o4, g, D). Indeed, it can be easily checked
that the above mentioned volume form coincides with the Riemannian volume induced
by the Sasaki metrigp on D. To check the equivalency of the conditions, note that,
for a linear constraintPp = TPp : i;,(TTM) — TD, wherePp : TM — D is the
orthogonal projection, and, for all, € D, Cy, = Dy. Hence,P : v, € D> (Pp), €
L(TM, TM) is constant on the fibers afp : D — M. Thus,FP = 0 and condition (ii)
from Theorem 5s trivially fulfilled.

Besides, as we have pointed outRemark 3 a direct computation shows that, for
all v, € C, A(vy) = Bp(vy), WhereBp(vy) = Bp(-,vg) : TyM — Dj. Therefore,
given a smooth orthonormal framey, ..., X,) on a neighborhood/ of ¢ in M,
adapted tdD, (i.e. such thatX1(q), ..., X,(¢)) is a basis ofD,, wherer = rkD),
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we have
tr A(vg) = Y _(Xi(@), Bo(Xi(@), vp)) = Y _ (Xi(q), Bp(Xi(q), vy))
i=1 i=l+1

n
== D (Bpu(Xi(@). Xi(9)). vg) = —( Bp.lpi,pi. vg)
i=I+1

what shows that condition (i) frofiheorem Ss equivalent to, for aly € M, tr B.
(q)|D,}><Dj =0.

(b) Also with respect to the linearly constrained case, we refer the read@}, tohere
a necessary and sufficient condition for the existence of an invariant measure for the
dynamics of generalized Chaplygin systems was obtained.

Corollary 4. The vector sub-bundldor(C) of TCis involutive if and only if for all g € M,
vy € Cy, Wy, 24 € T4M:

P(vg) - R(wy, 2¢) - vg = Pug) - PAWy) - (24, wy) — P(vy) - PA(vy) - (wy, 2¢)-
12)

Remark 5. Inthe case of a linear constraibt we have, for alb, € C, A(vy) = Bp(vy) =
Bp(-.vy) : TyM — D, whereBp : TM @y D — D' is the total second funda-
mental form ofD. Computing the parallel derivativBA and using Gauss’ formula, we
conclude thaEq. (12)is equivalent tdR? = 0, whereR? is the curvature tensor of the
connection induced of® by the Levi-Civita connection ofM, g) and by the orthogo-
nal projectionPp : TM — D. That is to say, we have reobtained the well known fact
that the horizontal sub-bundle H@) is involutive if, and only if, the connectio¥?

is flat.

Corollary 5. Suppose that the Lebesgue measur€ orduced by the metric tensgg. is
preserved by the flow of the GMA vector fiédg of the constrained mechanical system
(M, K, V, ), for all potentialsV e §(M). Then for all ¢ € M such thatC, # @, C, is a
minimal surface ofC, g¢); that is to saythe Riemannian manifol@, g¢) admits a regular
foliation by minimal surfaces

The following proposition, which closes this section, generalizes a result[##t6n

Definition 14. We say that a constraigt C TM is totally geodesidf the geodesic spray
from (M, g) is tangent tc.

Proposition 8. Lety be a d’Alembert—Chetaev trajectory of the free constrained mechan-
ical systemM, K, 0, C). Theny is a geodesic ofC, g¢) if, and only if y is a geodesic of

(M, g). Hence the canonical lifts of the d’Alembert—Chetaev trajectoriegMf K, 0, C)

are geodesics aiM, g) if, and only if C is totally geodesic
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Remark 6.

(@) A linear constrainD is totally geodesic, i.ex - Py - S(vy) = —Bp(vg, v4) = 0 for
all v, € D if, and only if, BD|§>@MD = 0, that is to say, if the symmetric part of the
restriction of Bp to D @y D is identically null.

(b) PuttingC = TM, we reobtain the result frofd6] which states that the canonical lifts
of the geodesics aiM, g) are geodesics afTM, grum).

4. Proof of the main results
4.1. Gauss’ principle and the d’Alembert—Chetaev trajectories

Proof of Theorem 1. Let R4 : C — TM be the admissible reaction field fav, K, F, C)
defined by, for alb, € C:

RA(vy) = —k - Pw(X£(vy)), (13)

whereXr : v, € TM = S(vy) + Avq(]-'ﬁ(vq)) € T,,TM is the GMA vector field of
(M, K, 7).

Note thatR4 is smooth and’(§A = Xrlc — Pw o XFlc = Xc is the GMA vector field
of (M, K, F, C), henceR4 is, indeed, an admissible reaction field.

Let R € % andv, € C. Let us definew, := R(vy) — R*(vy) € T,M. Theni, w, €
T,,CNVer,, (TM) = Ver,, (C), since itis obviously vertical anﬁﬁq-wq = P,fq-R(vq)—Pvlq-
R*(vy) = 0, byEq. (8) On the other hand, we havg, (R*(v,)) € W,, = Ver, (O)* C
Ver,, (TM), thus (A, wy. Ay, (R*(vy))) = 0. It then follows that

(Mg (R(0g)), hyy (R(0g))) = (hy, (R (0g)), ho, (R (v9))) + (A, g, Aoy, wg)
+ 2k, (R (vg)), Ay, wg)
=0
> (hy, (R (v9)), Ao, (R* ()

and the equality holds if, and only it,, w, = 0, i.e.w,; = R(v,) — RA(vq) =0.
Sincei,, : T,;M — Ver, (TM) is a linear isometry, and sinag € C andR € R were
arbitrarily taken, we have shown that, for all admissible reactirs) and for allv, € C,
||RA(U?4)|| < [R(vy)ll, and that, ifR € R satisfies(Vv, € C)|RA (vl = [ R(vy)ll, then
R = R”. O

Proof of Proposition 6. It is sufficient to note that

B(Xy,) = 311 X0, — XrIZ | — 31k, F*WII5 ..

where X r is the GMA vector field of the (unconstrained) mechanical systehK, F),
and applyTheorem 1the formula forX(’f given byEg. (7)andLemma 1 O
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Lemmal. Let(M, K, F, C) be a constrained mechanical system §@) the holonomic
prolongation ofC (seeDefinition 4). Then, for ally, € C:

P, (©) = {XF ()R € R},

wherefR is the set of admissible reactions 4, K, F, C) andXé? is given byEq. (7)

Proof. Givenu, € C, the inclusion{X£(v))|R € R} C B,,(C) is clear, sincexf is a
second-order vector field ofy for all R € JR. To check the other inclusion, Ie;[vq IS
Py, (€). SinceP(C) C J2(M), there exists a second-order vector fidld TM — TTM
such thatf((vq) = Xy,. Let X : C — TC be the vector field defined by (w,) = Pc -
X(wq), for all w, € C. As X(vy) = Pc- X,, = X,, (sinceX,, € T,,C), we achieve
the demonstration once we show that there exists an admissible reRcHdA such that
X = Xg. As a matter of fact, defin® : w, € C — « - X(wy) — ]—'ﬁ(vq) € TM. Then,
the fact of X being a second-order vector field Gnimplies thatPiq k- X(wg) + k-
Py - S(vy) = 0, for allw, € C, hencer satisfiesEq. (8) i.e. R € R andX = X5, as
asserted. O

4.2. Holder's and Hertz's principles

Proof of Theorem 2. Givenn € T,HX(M, [a, b]), lets € (—e, &) > y; € HY(M, [a, b])
such that Ty, /ds)|s—0 = n. Then we have

d b b
dew) =5 / K(35) = V() = / (Vin. 7) — (grad V(). n)
s=0Ja a

)/EH2 b b .
= 0. Ve— [ (Viy+grad\y), n).

Hence, for ally € HY(Cy, [a, b], ¥(a), y(b)):

b
dL) = — / (V27 + grad V(). ). (14)

Assume thay is a d’Alembert—Chetaev trajectory, i.e. a solution of Newtagsation (3)
with reaction termR# (whereR“ is given byTheorem }. Since(Vv, € C)P(v,)- R (v,) =
0, it follows that, for allf € [a, b], P;, - (V;y 4+ grad y)) = 0, hence d(y) - n = O for all
n € HX(Cy, [a, b], y(@), y(b)).

Reciprocally, assume that’dy) - n = 0 for all € Hl(C,-,, [a, b], y(a), y(b)). Then
it follows from (14) thatP; - (V;y + grad(y)) = 0 a.e. on ¢, b]. On the other hand,
asy is a horizontal curve, we must ha@;/L -Viy = —7?),l -grad\(y) + R4(y) a.e. on
[a, b]. Therefore, summing the two last equations, we concludejttsatisfies Newton’s
equation (3with reaction termkR4 a.e. on §, b], i.e. y is a d’Alembert—Chetaev trajectory
of (M, K, V, (). O
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Proof of Theorem 3.

(i) Itis enough to consider curves which are parametrized by arc length. This is a con-
sequence of the following facts: (1) the geodesic curvature is independent of the
parametrization; (2) sincé€ is a cone, if a curve is horizontal, so is its arc length
reparametrization; (3) if a curve is a d’Alembert—Chetaev trajecto(ioK, 0, C), so
is its arc length reparametrization (this follows from the fact thaRhyposition 7the
kinetic energy K is constant along the d’Alembert—-Chetaev trajectories of
M, K, 0, C)).

(i) Assumethay is a horizontal curve parametrized by arc length, andtakdomy. Let
v, := y(#) € C. For any horizontal curve : (—¢, &) — M parametrized by arc length
such thatt(0) = vy, we havecy (0)% = || Vy—o&tl|? = [Py, - Vi—odl|® + | RA (vy) 112,
sincea horizontal impliestlq - Vij=0& = R (v,).

(iii) If y is a d’Alembert-Chetaev trajectory, we ha@g, - V,y = 0, hence/cy(t)2 =
IRAW)IZ < 1Py, - Viy=0&tll? + [RA(v) 1% = k4(0)%, for all a : (—&,8) — M
parametrized by arc length such tb&0) = v,. It then followsk,, (1) = min{k, (0)|« :

(—e&, ) - Mhorizontal with&(0) = y(?)}.

(iv) Reciprocally, assumethef(r) = min{x,(0)|x : (—¢, &) = M horizontal withe(0) =
y(0)}. Leta : (—e,¢) — M be a d’Alembert—Chetaev trajectory with{0) = ¢ and
@(0) = vg. Thenk, (0% = [RA(W)I? + Py - Vivl® < a(0)? = IR (vy)|1%,
henceP; ) - Vi = 0. Sincer € domy was arbitrarily taken, we conclude thats a
d’Alembert—Chetaev trajectory. O

4.3. Conservation of energy

Proof of Proposition 7. Givenv, € C, we haveZ(v,) € T,,C & Ay, € Ver, (C) &
vy =k - dy,vg € Cy,. By the arbitrariness aof, € C, we conclude thaZ is tangent tc if,
and only if, the following condition holds

(i") (Yvg € Oy € Cy,.

Assume that condition ()i holds, i.e. the constraint is homogeneous. Givea ¥ (M),
lety : I — M be a d’Alembert—Chetaev trajectory @, K, V, C) defined on the interval
I C R.Then, forallr € I, y € C, hencey € Cj by (ii'). Besides, a¥;y 4+ grad (y) =
Ry(y) € C}%, we have

d
3 (KO + V) = (Vi 7) + (grad V). 7) = (V7 + grad V). 7)
= (R, 7) =0, (15)

so K+ V o 7y is constant along. Sincey was arbitrarily taken, it follows that K- V o
7V IS a first integral of the GMA vector field(\c’, for all V € §(M), i.e. condition (i)
holds.

Reciprocally, assume that conditior)is false, i.e. there existg € Csuchthab, ¢ Cy,.
Then, defining)j = Pﬁqvq € Cj;, we hava)ql # 0. Take Ve §(M) such thatgrad ) =
vj-|-/<-PW-S(vq);therefore, fronEq. (13)it follows thatR{ (vy) = —«- Pw-Xv (vg) = vj.
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Thus, by the same computation don€15):
XGg)[K +V o tv] = (R (vg). vg) = (v, v) > 0

what shows that condition (i) does not hold. O

Proof of Corollary 1. Indeed, ifC is a homogeneous constraint, it follows fra@mma 2
that, for eachy € M, C, is a linear subspace df,M. Moreover, sincerc : C — M is

a submersion and, = ngl[q], all subspaces§,, ¢ € M, have the same dimension. We
contend thay; — C, is a smooth distribution oM (i.e. it is locally generated by smooth
sections).

As a matter of fact, lef € M and(ey, ..., ¢) be a basis of,. As ¢ is a submersion,
there exist local smooth sections,, ..., X; of n¢ : C — M, defined on an open set
U c Mwith g € U, such thatX;(q) = ¢;, for 1 < i < k. By continuity, there exists
an open neighborhooll ¢ U of ¢ such that{X1, ..., X;} is linearly independent ofy.
Therefore(|;; is generated by the smooth sectionis . . ., X;. Finally, sinceg € M was
arbitrarily taken, we conclude thétis locally generated by smooth sections, Cds a
smooth distribution, as asserted. O

Lemma 2. If C C TMis a closed homogeneous constraithien for all ¢ € M, C, is a
linear subspace of ;M.

Proof. Letg € M. We have

1. C, is a closed embedded sub-manifoldigM.
Indeed, we have already provenS$ection 2.2hatC, is an embedded sub-manifold
of T,M. The hypothesis of being closed iTM implies thatC, is closed inTM, hence
in T,M.
2. For eachy, € C, and for each > 0, we havev, € C,.
Indeed, for each, < C, the fact ofZ being tangent t& implies that there exists
e(vg) > O such thaty, € Cfort € (—e(vy), e(vy)). Let T, := supt € R|€v, € C}
andn,, = inf{r € R|€v, € C}. If T,, < +oo, the fact ofC being closedM implies that

e, € C, hence there exists> T,, such that &, € C, what is a contradiction; thus,

T,, = +oo. Similarly, #,, = —ooc. This shows that'e, e Cforallr e R, i.e.ty, € C
for all # > 0. Again by the fact o€ being closed ifTM, it follows thatOQ, = Oy, € C,
what concludes the proof of the assertion.

3. Identifying 7o, (C,) with a linear subspace df,M, we assert that, = Tg,(C,), and
this concludes the proof. As a matter of fact,dgt € C, and define:

y:[0,400) = Cp. 1> twg.

Theny is a differentiable curve i@, (at 0, this means that it is differentiable from the
right), since it is differentiable as a curve with valuesTyM and(, is an embedded
sub-manifold ofT,M, as we have seen. Thus

Ty
wy = o » € To,(Cy).
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Sincew, € C, was arbitrarily taken, this shows th@t C Tg, (C,). ButC, andTg, (Cy)

are both embedded sub-manifolds fM with the same dimension, thus, 6, C

Tp,(Cy), C; must be an open sub-manifold @6, (C,). As C, is closed inTyM, it

must be also closed iffig, (C,), which is connected, since it is a vector space. Then
q

Cq = Tp,(Cy), as asserted. O

4.4, The Jacobi—Carathéodory metric tensor

Proof of Theorem 4.

(i) Letg:[a, b] — [0, L] be defined by > [ /g.(7, 7). Then(og) : HX(M, [0, L]) —
HL(M, [a, b]) is a smooth diffeomorphism, andg™1) = (oh) (whereh : g~1 :
[0, L] — [a, b]). We assert that the tangent ma@p(oh) maps the linear subspace
HY(Cy, [a, b], y(a), y(b)) isomorphically ontdi (C;, [0, L], y(a), y(b)). Indeed, given
n € T,HY(M, [a, b], ¥(a), (b)), by definition we have) € HL(C;, [a, b], ¥(a), y(b))
if, and only if, n(r) € Cy ) a.e. on§, b]. Hence,;n € Hl(Cy, [a, B], y(a), y()) if, and
only if, i := T(oh) - n = noh satisfies)(s) = noh(s) € Cyu(s) a.e.on[QL]. Since,
foralls € [0, L], 7' (s) = y(h(s))h'(s) andh’(s) > 0, the assertion will be proved once
we show that, for alb, € C and for allz > 0, C,,, = Cr,, C T,M. As a matter of fact,
givent > 0, the hypothesis af being a cone ensures that

u' :C—C, vy > tyg

is a well defined smooth diffeomorphism. Besides, itis clearthateserves fibers, i.e.
forallg € M, u'(C,) = C,. Therefore, for alb, € C, we haveTu'- Ty, (C,) = Tr, (Cy)
and, applying the connectetry, to both members of this last equation, we conclude
thatC,, = Cy,, as asserted.

(i) Let £, : HX(M, [0, L]) — R be the Lagrangian functional induced by,Ke. defined
byy fab K(y). Using the fact that k yy +V o y = const = ¢, a direct computation
shows that, for alV € T,H(M, [a, b]):

dC(y) - J =v2dL. () - 7, (16)

whereJ = Ty (oh) - J = Joh € T;HY(M, [0, L]). SinceT, (oh) mapsH(C;, [a, b],
y(a), y(b)) isomorphically ontd-ll(Cf,/, [0, L], y(a), y(b)), Eq. (16)shows thatd (y) -
{O}. The proof then follows fronTheorem 2 O

4.5. The Liouville’s theorem for the Gibbs—Maggi—Appell vector field

In order to demonstratéheorem 5we define a convenient moving frame émand we
compute the Levi—Civita connectiovC of (C, g¢) and the divergence of the GMA vector
field X‘C’ in terms of this moving frame. This will be done in the following definitions and
lemmata.
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Definition 15. Givenv, € C, let (X1, ..., X,) be an orthonormal frame field @M, g)
defined on an open neighborhobddof ¢ € M. Let us define, for 1< i < n and for all
wy € Cy = g [UI:

Xf(wg) = H, (Xi(g), X! (wy) =145, (Xi(g)).
We can assume theP(v,) - X1(q), - - ., P(vg)- Xi(q)) isabasis o€, , where = rk Ver(C).
Then, taking vertical lifts, we conclude th@; (v,). . ... X} (v,)) is abasis of Vey, (C). By

continuity,(xY, ..., XZV) forms aframe field on the vector bundle \@ron a neighborhood
U of v, onC.

Thus, we have constructed a frame fifle= (X7, ..., X, X/, ..., X,y of Cona
neighborhood/ of v,.

Note that this frame field is not orthonormal, except for its “horizontal” part, i.e.
(X[, x4y = &j, for 1 < i, j < n. Note also that, i = TM, we havel = n and the

frame field is orthonormal, and we can tdke= rh‘,ll[U].
Notation.For the sake of clearness, we use indicgsk for horizontal vectors, s, u for
vertical vectors.

Proof of Corollary 4. Corollary 4is a direct consequence of the next lemma. O

Lemma 3. Using the notation fronDefinition 15 we havefor 1 < i, j, r, s < n:

[x77, X[ 1(wg) = HS (1Xi, X,1(@) + A5 {P(vy) - R(X(q), Xi(q)) - vg
+P(g) - PA@y)- (X (@), Xi(9)—P(vg)-PAy)-(Xi(q), X (@)},
(XY, XY 1(vg) =15 (P(vy) - FP(vy) - (X,(q), X5(9)
—P(vy) - FP(v) - (Xs(@), X, (@),
(X[, XY 1(wg) = 35, {P(y) - Vit Xr + P(vg) - PP(vy) - (Xi(q), X,(9))
—Pvy) - FAQ) - (X,(@), Xi(@))), (17)
whereR is the curvature tensor g, g).

Proof. We demonstrate only the first formula, since the technique used the compute the
others is the same. Note that, since, foxli, j < n, X{’ is me-related toX; and Xl.V
is c-related to zero, we immediately obtalirc - [X/, Xf](vq) = [X;, X;1(q), Trc -
xY, ij](uq) =0andTrc - [XH, X]V](vq) =0.
We have, for 1< i, j, r,s < n and for all f € F(TM):
Q) X)) =Ffvg) - k- X[ () + Pf(vy) - Tre - X[ (vy)
=F flvy) - A(vy) - Xi(q) + P f(vy) - Xi(q)

and

X[l =F f(vy) - k- XY (vg) + P flvy) - Tre - XY (vg)
= Ff(vq) : P(Uq) - Xr (@).
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(2) Lety : (—&,&) — Cbe acurve ol such that(Ty/dr)|,—o = Xl.H(vq), and letg(r) :=
¢ o Y(1). We have

d
XXMy = 7 (Xf’ [f1ov)

,|, o{]Ff(J/(t)) A(y®) - X (@) + P f(y(@®) - Xj(q(n))}
= F2f<vq) (- XF (0g), k- X ()
+PF f(vg) - (Tre - X[ (vg). k- XH ()
+FP f(vg) - (- X[ (vg), Tre - XH (vy))
+P2 f(vg) - (Tre - X (vg), Tre - XH (vy))
+Ffvg) - {PA(vy) - (Xi(@), X j(@) + Avg) - Vx99 X j}
+Pf(vy) - VX -

Hence, byProposition 1it follows from the last equation that
(X[, X2 f1wg) =F f(vg) - R(Xj(9), Xi(@) - vg + PA(g) - (Xi(q), X(9)

—PA(vy) - (X (), Xi(@) + A(vy) - [Xi, X](q)}
+Pflvy) - [Xi, X;1(q)

and, sincef € §(TM) was arbitrarily taken, we conclude that
Tre - [X[T, X (vg) = [Xi. Xj1(g)

and
Plvg) - - [ X[, X1 (wy)

= P(vg) - R(X;(q@), Xi(q) - vg + P(vy) - PA(vy) - (Xi(q), X j(q))
—Plvg) - PA(vg) - (X(q), Xi(q))-
Finally, writing [X, X! (v,) = ng Tre-[XF, XM (vy) +A§q Plog)-ie-[X], XH]

(vg), We obtain the asserted formula foff, Xf’](vq). O

Lemma 4. Denoting byVC the Levi—-Civita connection @, g¢), and using the notation

from Definition 15 we havefor 1 < i, j,r,s < n:

= H, (Vx,@ X)) + 345, (P(oy) - R(X(@), Xi(@)) - v

—P(vg) - PA(vy) - (X (). Xi(q)) + P(vg) - PA(vy) - (Xi(q), X j(g))},

Vv Xs = 3H5, - ATg) - (F*Pg) - (X, (@). Xs(@)) +F*Plvg) - (Xs(q). X+(9))}
+ 45, (Pog) - FP(y) - (X,(q), X5(9))} (18)

C
VXH( vg) ]
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and
(Vi XF XJ ) = 3(P(ug) - Xr(9), =P(vg) - R(X(9), Xi(9)) - v = Plvg)
PA®W,) - (Xi(q), X /(@) +Pvy)-PA(vy) - (Xj(@), Xi(9))),
(Veu XY, XY () = (Pvy) - Xs(q), FP(vy) - (Xi(@), X+(@)) + Vi, X

Xl.H(vq) re
— 3(Pvy) - X5(q). FA(vy) - (X,(9). Xi(q)))
+3(P(vy) - X, (@), FA(vy) - (X(q), Xi(9))). (19)

Proof. Itis a consequence froremma 3and from Koszul's formula:

2(VxY, Z)=X(Y, Z) + Y(Z, X) — Z(X,Y) — (X, [Y, Z])
+(Y[Z, X]) +(Z,[X,Y]). O

Definition 16. Using the notation frorDefini}i'on 15let(U, (6%, ..., ™)) the dual coframe
field of (U, (X1, ..., Xp)). Forl<i <n,let¢' : TU — R be defined by, for ally, € TU:

0'(wy) := 6'(q) - wy.

LetS := Pgo S|¢: C — TC, whereS is the geodesic spray of, g), andV : C — TC be
defined by, for alb, € C, V(vy) = Pc - Ay, (—grad V(q)) = qu(—grad V(q)).

We have, for all, € U, S(v,) = PetH, (vg) = HS, (b)) = Y1216/ () XY (v,) and
V(vg) = 1§ (—grad V(g)) = — 311 0 (grad V(@) X{ (vy)-
Thatis to sayX) = S+ V, where

n

Sly = Zéijf!, Viy = — Z(é" o grad Vo mely) XV . (20)
j=1 i=1

4.5.1. Proof of Liouville’s theorem

We can now demonstraiéheorem 5The demonstration is a direct consequence of the
following proposition, which gives the expression of the divergence of the GMA vector
field, with respect to the Riemannian volume.

Proposition 9. For all v, € C, divX}:’ is given by the following formula

div X! (vg) = tr A(vg) + (tr F*P(vy)Ic,, xc,, » RY(Vg))- (21)

Proof. We can assume that, at the pajnt M, the orthonormal frame fiel(l, (X1, ...,
X)) is adapted t@,,, i.e.(X1(q), ..., Xi(g)) is an orthonormal basis oqu and(X;y1(q),
..., Xn(g)) is an orthonormal basis (dfulq. Then, we have

n l
div X (vg) = D (X[ (v,). vf([_,,(vq)x\cﬁ + D (X) (0). Vv () XE)- (22)
i=1 r=1
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We now useEq. (20) and Lemma 4to compute the terms on the second member of
(22). O

Lemmab. Forall g € M, v, € Cy, wy € TyM:

(i) FP(v)) = —FP+(vy) andPP(v,) = —PP*(v,);
(i) P(vy) o {FP(vy) - wg} = {FP(vy) - wy} o PH(vy) and P(vy) o {PP(vy) - wy} =
PP(v,) - wg} o PH(vy);
(iii) P(vg) of{FA(vg) wg} = —{FP(vg)-wy}o Ay, andP(vy) o{PA(vg) - wy} = —{PP(vy)-
Wg} o Ay, .

Proof. The three assertions follow, respectively, by derivation of the identiies <
OP(vg) + P (vg) = idy,m, P(vg) 0 PH(vy) = 0 andP(vy) o A(vy) = 0. O

Proof of Theorem 5. By Eq. (21) it is clear that di\D(g is identically null onC, for all
potentials V € F(M), if conditions (i) and (ii) are satisfied. Reciprocally, assume that
div X\C’ is identically null onC for all V e §(M). Let us fixy, € C. As {gradM(g)|V <
SM} = T,M, and since‘Pl(vq) :TyM — T,;Mis onto C,}q, there exists Ve §(M)
such thaUJl(vq) -gradMgq) = « - Pw - S(v,), i.e. such thaﬂi’(}(vq) = 0. Thus, for this

V, we conclude fronmEq. (21)that divX\C’(vq) = 0 implies trA(v,) = 0. It then follows
that

div X! (vg) = (tr F*P(vy)Ic,, xc,,» RY (V) (23)
and this expression must be zero for alkeVg(M). Again by the fact thafgrad (¢)|V €
F(M)} = T,M and thatP* (v,) : T,M — T,Mis ontoC;, , we conclude thatR{ (vy)|V €
FM)} = Cvlq. Hence, it follows from(23) thatPL(vq) - tr F*P(vy) = 0. We contend that

’PL(vq) -trF*P(vy) = trF*P(v,); asv, € C was arbitrarily taken, this will achieve the
demonstration, since conditions (i) and (ii) will be verified. Indeed, fog &IM, v, € C,,
Wy, Zq, Sq € Cy,, WE have

<F*P(Uq) (wg, 2¢)s8q) = (2g IF,P(vq) < (wg, 5¢))

= <qu P(Uq)]FP(Uq) : (qu sq))
sq4€Cy,
LeaS 2 FP(ug) - (g, PH(vg) - 59)) " =0,
what shows that, for all; € C, F*P(vg)lc,, xc,, : Cu, X Co, = Cj;. O

Proof of Corollary 5. Indeed, lety € M such thatC;, # ¢ and letBc, be the second
fundamental form of,. Givenv, € C; andX,,, Yy, € T,,Cq4, We assert that

ch(qu, qu) = %ng : A*(Uq) : {F*P(Uq) (k- qu» K- qu)
+TF*P(vg) - (ke - Yy, k- X))}
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As a matter of fact, using the notation frabefinition 15 it follows from (18) that, for
1<rs<n:

Be, (X[ (vg). X{ (v)) = Ph - Vigy,

= 1HS - A% (1)) - {F*P(vy) - (X, (q). Xs(q))
FFP(o,) - (Xs(@), Xr(@)).

Therefore,foralbq € Cy,tr Be, (vg) = ng.A*(vq)ftr F*P(vq)|cvqxcvq,hence tBe, (vg) =
0 |f tr F*P(Uq)|ct%qxcvq =0. 0

Xy

Proof of Proposition 8. Lety be a d’Alembert—Chetaev trajectory @, K, 0, ), i.e. for
all t € domy, we have

Y@ = Pc-S(y(1) = S(y(@).
Hence
Viy = Vi(Sop).

Let us fixt € domy and letp := y(1) € M, w,, := y(r) € C. LetF = (x4, ..., X1,
X‘l/ XIV) be a frame field orC on an open neighborhodd of w), in C, like in
Definition 15 As usual, we can assume that, on the pgint M, (X1(p), ..., X,(p))
is an orthonormal frame adapteddy,,, so that(X}’(w,,), el Xl"(wp)) is an orthonor-
mal basis of Vﬁp. Let (U, (6%, ..., 6")) be the dual coframe af, (X1, ..., X,)), as in
Definition 16 We have

n
Slu=)_ /x4 (24)
j=1
Therefore
n
Ve = Zéi(wp)vg[,, S (25)

i=1
Using Lemma 4andEg. (24)to compute the second member(@6), we conclude that
V,Cj) = 0 if, and only if, (k - Py - S(w,), Xk (p)) = 0 for 1 < k < n, i.e. if, and only if,
k- Py -S(wp) = 0, what is equivalent t®y - S(w,) = 0. Sincer e domy was arbitrarily
taken, we have shown thatis a geodesic ofC, g¢) if, and only if, Py - S(y()) = 0
for all # € domy. As y is a d’Alembert—Chetaev trajectory, this is equivalenjto =
Pe - S(y(®) = S(y(r)) for all r e domy. Thus,y is a geodesic ofC, g¢) if, and only if,
is a geodesic ofM, g), as asserted. O
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