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Abstract

In the present work, we analyze classical mechanical systems with non-linear constraints in
the velocities. We prove that the d’Alembert–Chetaev trajectories of a constrained mechanical
system satisfy both Gauss’ principle of least constraint and Hölder’s principle. In the case of a
free mechanics, they also satisfy Hertz’s principle of least curvature if the constraint manifold is a
cone. We show that the Gibbs–Maggi–Appell (GMA) vector field (i.e. the second-order vector field
which defines the d’Alembert–Chetaev trajectories) conserves energy for any potential energy if,
and only if, the constraint is homogeneous (i.e. if the Liouville vector field is tangent to the constraint
manifold). We introduce the Jacobi–Carathéodory metric tensor and prove Jacobi–Carathéodory’s
theorem assuming that the constraint manifold is a cone. Finally, we present a version of Liouville’s
theorem on the conservation of volume for the flow of the GMA vector field.
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1. Introduction

The aim of this paper is to develop a geometric formulation of the dynamics of non-linearly
constrained mechanical systems based on Newton’s law.

∗ Corresponding author.
E-mail addresses:glaucio@ime.usp.br (G. Terra), marcelo@popsrv.ist.utl.pt (M.H. Kobayashi).

1 Present address: Department of Mechanical Engineering, University of Hawaii-Manoa, 2540 Dole Street –
Holmes Hall 302, Honolulu HI 96822.

0393-0440/$ – see front matter © 2003 Published by Elsevier B.V.
doi:10.1016/j.geomphys.2003.08.005



386 G. Terra, M.H. Kobayashi / Journal of Geometry and Physics 49 (2004) 385–417

The constrained mechanical system is modeled by the following setup. We consider a
smooth finite dimensional manifoldM, called theconfiguration spaceof the mechanical
system, and a smooth function K :TM→ R, called thekinetic energy, which we assume
to be a positive definite quadratic form on each fiber of thevelocity phase spaceTM. By
polarization of this quadratic form on each fiber ofTM, we obtain a smooth metric tensor
g on M, endowed of which it becomes a Riemannian manifold. The constraint is given by
a smooth embedded submanifoldC of the tangent bundleτM : TM → M, such that the
restrictionτM|C : C → M is a submersion. This is Marle’s[35] definition of a “regular
constraint”; other formulations of systems with non-linear constraints may be found in
[5,7,14,15,24,27–29,35–38,51–54], among others.C is called theconstraint manifold(or
simply constraint). We say that the constraint islinear if C is a vector sub-bundle ofTM.
The linear constraint case is well known has an extensive literature ranging from classical
texts such as[4,20,43,55]to papers using modern differential geometry[8,11,18,25,26,31],
among others. A curveγ on M is amotionor trajectory compatible with the constraint, or
horizontalwith respect to the constraint, if it is differentiable and its velocity lies inC almost
everywhere on its domain. The dynamics of the mechanical system is given by a smooth
fiber bundle morphism (i.e. it is a smooth map and preserves fibers)F : TM→ T∗M, called
theexternal force. We say that the external forceF derives from a potentialV ∈ F(M) if it
is of the formvq ∈ TM �→ −dV(q) ∈ T∗M.

In the unconstrainedcase, i.e. ifC = TM, we say that a curveγ on M is a motionor
trajectory of the mechanical system(M,K,F) if it is a solution ofNewton’s equation[41]:

F(γ̇) = µ(∇t γ̇), (1)

where∇ is the Levi–Civita connection of the Riemannian manifold(M, g),∇t the induced
covariant derivative on fields along the curveγ andµ = g� : TM → T∗M the Legendre
transformation induced by the metric tensor. Using the notationg� := (g�)−1 : T∗M→ TM
andF � := g� ◦ F (which we also callexternal force), we obtain the following equivalent
and more frequently used form ofequation (1):

F �(γ̇) = ∇t γ̇ . (2)

Taking vertical lifts on both members of the last equation, we obtain(T γ̇/dt) − Hγ̇ (γ̇) =
λγ̇ (F

�(γ̇)), showing that the solutions of(2)are thebase integral curves(i.e. the projections
on M of its integral curves) of the second-order vector fieldXF ∈ D1(TM) defined by, for
all vq ∈ TM,XF(vq) = S(vq)+λvq(F�(vq)), whereS is the geodesic spray of(M, g).XF is
called theGibbs–Maggi–Appell vector field(GMA) of (M,K,F)—this nomenclature was
suggested by Fusco and Oliva[18] in the context of linearly constrained mechanical systems.

In the general case, we define amotionor trajectory of the constrained mechanical system
(M,K,F, C) as a curveγ onM which is compatible with the constraintC and which satisfies
Newton’s equation with reaction termR:

∇t γ̇ = F �(γ̇)+ R(γ̇) (3)

for some fiber preserving mapR : C → TM, called thereaction force field. We assume
thatR is anadmissiblereaction in the sense ofDefinition 6, what ensures the existence of a
second-order vector fieldXR

C onC (i.e. a vector fieldXR
C : C→ TC such thatTτM◦XR

C = idC)
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whose base integral curves are the solutions of(3). This vector field is obtained by taking
vertical lifts on both members ofEq. (3).

We show in the present work that a convenient choiceR = RA of the admissible reaction
force mentioned above, through a rule which generalizes d’Alembert’s principle for linearly
constrained systems, leads to the so-calledd’Alembert–Chetaev mechanics. This paper
focuses on the study of some properties of the flow of the vector fieldXRA

C obtained by
this choice of the reaction force, called the GMAvector fieldof the constrained mechanical
system(M,K,F, C).

Historically, to the best of our knowledge, the first example of a mechanical system with
non-linear constraints in the velocities was proposed by Appell[3] (which later has risen
some criticism, see[39]). Since then, the theory for constraints that are non-linear in the
velocities has attracted the interest of both the mathematical and the physical communities. A
concrete example of a class of non-linear constraints which has been studied to some extent
is provided by the so-calledisokinetic dynamicsin which the kinetic energy is constrained to
be constant. This example, first proposed by Hoover[23], finds many interesting applications
in non-equilibrium statistical mechanics (see, for example[19,23,45,56]). Also, recently,
Cushman et al.[13] realized a classical particle with spin as a rigid body constrained to
have a fixed value of the norm of the angular momentum. In a broad sense, a non-linear
constraint may be regarded as a control system—see the servomechanismExample 1(c).
In this case, the resulting reaction field provided by d’Alembert–Chetaev’s principle may
be understood as a non-linear control law which minimizes the strength of the reaction
field—seeExample 2.

Nowadays, the field of non-linearly constrained mechanical systems remains an active
area of research and, as far as we know, many fundamental results that hold for an uncon-
strained or linearly constrained mechanical system, such as Liouville’s Theorem, had not
yet been established for non-linear constraints.

The organization of the paper is the following: inSection 2, we set up basic definitions
and notation, and we introduce a technique which will be used to enounce and prove the
results in a coordinate-free manner.

In Section 3, we enounce and describe the main results of the paper.
In Section 3.1, we define the concept ofadmissible reaction fieldfor a constrained me-

chanical system(M,K,F, C)and itsd’Alembert–Chetaev trajectories. These trajectories are
the solutions of Newton’s equations with reaction term(3) for a certain choice of the admis-
sible reactionR that has remarkable properties. We also prove that the d’Alembert–Chetaev
trajectories of(M,K,F, C) satisfy Gauss’ principle of least constraint—seeTheorem 1.
As a corollary of the latter we obtain the so-called Gibbs–Appell form of the equations
[43].

In Section 3.1we prove that if the external forceF derives from a potential V∈ F(M), the
d’Alembert–Chetaev trajectories also satisfy Hölder’s principle—Theorem 2. If the con-
straint manifold is a cone, they also satisfy Hertz’s principle of least curvature in the case
of free mechanics—seeTheorem 3. At this point we should mention that, except for some
minor modifications which occur in the various formulations of systems with non-linear
constraints, the d’Alembert–Chetaev trajectories and Hölder’s principle are well known and
consolidated in the literature—see[5,15,36,37], among others. However, the characteriza-
tion of these trajectories through Gauss’ principle of least constraint—interpreted here as



388 G. Terra, M.H. Kobayashi / Journal of Geometry and Physics 49 (2004) 385–417

a principle of “minimal reaction force”—and through Hertz’s principle of least geodesic
curvature seems to be an original contribution.

In Section 3.3we deal with the conservation of energy property and conditions under
which the GMA vector field is Hamiltonian with respect to some Poisson structure onC.

In Section 3.4we prove a version of Jacobi–Carathéodory’s theorem for constrained
mechanical systems, provided that the external force derives from a potential V∈ F(M)

and that the constraint manifold is a cone.
Finally, in Section 3.5we generalize Liouville’s theorem on the conservation of volume

for non-linearly constrained mechanical systems. We obtain, as by-products, the extension
of some results by Sasaki[46,47]on the Riemannian metric on the tangent bundle.

In Section 4, we prove the main results.

2. Basic notations and definitions

In this section we set up the notation and basic definitions.
M will denote a smooth connected finite dimensional manifold;TM (resp.T∗M) denotes

the tangent (resp. cotangent) bundle ofM and τM : TM → M, τ∗M : T∗M → M the
associated projections. We denote the trivial bundle overM with fiber F by FM. In the
present work, “smooth” meansC∞. Following Helgason[22], the set of smooth functions
on M, smooth vector fields onM and Pfaffian forms onM are denoted byF(M), D1(M)

andU1(M), respectively. IfπE : E → M is a smooth vector fiber bundle overM thenOE

will denote the zero section ofE, that is,OE = {Op : p ∈ M}, with Op the zero vector of
Ep = π−1

E [p], p ∈ M. The set of smooth sections ofπE : E→ M is denoted byΓ∞(E).
In the sequel, we recall some notions regarding the geometry of the tangent bundleTE of a

smooth vector bundleE overM (see, for example[2,32]or [30]), which we will use later on.
LetE⊕M E denote the Whitney sum ofπE : E→ M with itself. Thevertical lift is the

mapλE : E⊕ME→ TE such that, for anyq ∈ M, vq ∈ Eq, λEvq = λE(vq, ·) : Eq → TvqE

is the tangent map atvq of the inclusionEq → E, using the canonical identification
Tvq(Eq) ≡ Eq. That is, for allwq ∈ Eq, we have:λEvq(wq) = (T/dt)|t=0(vq + twq).

The mapλE is a smooth VB-monomorphism defined on the smooth vector bundle pr1 :
E⊕M E→ E whose image is thevertical sub-bundleVer(E) = ker(TπE).

Let ∇ : Γ∞(E) → Γ∞(T∗M ⊗ E) (or ∇E, if there is a risk of confusion) denote a
connectionon πE : E → M. That is,∇ is anR-linear map which satisfies the condition
that, for anyf ∈ F(M) and anyσ ∈ Γ∞(E): ∇(fσ) = df ⊗ σ + f∇σ. The connection∇
gives rise to a smooth VB-morphism HE : E⊕M TM→ TE: for anyq ∈ M, wq ∈ Eq and
vq ∈ TqM, choose any smooth curveγ : (−ε, ε)→ M, t �→ γ(t), such that(Tγ/dt)|t=0 =
vq. Letτγ(t) : Eq → Eγ(t) be the parallel transport alongγ defined by the connection. Then
the tangent vector at 0 of the smooth curvet ∈ (−ε, ε) → τγ(t)wq is independent on the
choice ofγ—it depends only on the pair(vq, wq). We denote it by HEvq(wq) = HE(vq,wq).

HE defines a VB-monomorphism of the smooth vector bundle pr1 : E ⊕M TM→ E into
τE : TE → E. Its image Hor(E) is thehorizontal sub-bundleinduced by the connection.
HE(vq,wq) is called thehorizontal lift of wq at vq, and is the unique vector at Horvq(E)

which projects (throughTπE) to the vectorwq ∈ TqM.
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The smooth vector bundleτE : TE→ E is the Whitney sum Hor(E)⊕E Ver(E) of its
horizontal and vertical sub-bundles.

With a connection we can define theconnectorκE : TE→ E, which is a VB-epimorphism
from τE : TE → E to πE : E → M such that for eachXvq ∈ TE, κE(Xvq) ∈ Evq is the
unique vector which satisfies:

Xvq = HE
vq
(TπE ·Xvq)+ λEvq(κE ·Xvq). (4)

Note that the restriction of the connector to the vertical bundle does not depend on the
connection, since it is the inverse of the vertical liftκVE : Ver(E)→ E, Xvq ∈ VervqE �→
(λEvq)

−1 ·Xvq .
The main significance of the preceding operators is that they allow us to work with objects

in M andE instead ofTE. For example, letu : (−ε, ε)→ E be a differentiable curve and
γ : (−ε, ε) → M be its projection onM, γ = πE ◦ u. Denoting byu̇ := (Tu/dt) the
tangent vector field alongu, we haveκE · u̇ = ∇tu, where∇t is the covariant derivative
alongγ associated to the connection∇. Therefore, we have the following modified version
of Eq. (4), which will be extensively used:

u̇ = Hu(γ̇)+ λu(∇tu).
For the sake of simplicity, from now on we will omit the “E” from the notation, using H,
λ, κ instead of HE, λE andκE, respectively, whenever there is no risk of confusion.

2.1. The fiber and parallel derivatives

LetπE : E→ M andπF : F → N be smooth vector bundles overM andN, respectively,
and letb : E→ F be a smooth fiber bundle morphism overb̃ : M→ N. That is,b, b̃ are
smooth maps such that the following diagram is commutative:

The concept offiber derivativeof b is well known (see, for example[1]); it is the fiber
bundle morphismFb defined by

Fb : E→ L(E, b̃∗F), vq �→ Fb(vq),

whereb̃∗F is the pull back vector bundle ofF by b̃ and, for allwq ∈ Eq:

Fb(vq) · wq := κVF · Tb · λvq(wq) = d

dt

∣∣∣∣
t=0

b(vq + twq) ∈ Fb̃(q),

where d/dt denotes the derivative of the curvet �→ b(vq + twq) on the linear spaceF
b̃(q)

.

Given connections∇E and∇F on the vector bundlesπE : E → M andπF : F → N,
respectively, we introduce in the following definition a dual concept to the fiber derivative
of b.
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Definition 1. The smooth fiber bundle morphismPb : E→ L(TM, b̃∗F) given by, for all
vq ∈ E and allzq ∈ TqM:

Pb(vq) · zq := κF · Tb · Hvq(zq) ∈ Fb̃(q)
is called theparallel derivativeof b.

The idea of introducing these objects is to use the globally defined “partial derivatives”
Fb andPb to compute the tangent map ofb. The following formulae will be extensively
used:

TπF · Tb ·Xvq = Tb̃ · TπE ·Xvq,

κF · Tb ·Xvq = Fb(vq) · κE ·Xvq + Pb(vq) · TπF ·Xvq,

so that, given a curveγ in M and a differentiable sectionX of E alongγ, we have

∇Ft (b ◦X) = Fb(X) · ∇Et X+ Pb(X) · γ̇ .
Besides, the connections on the vector bundlesE andF canonically induce a connection
on the smooth vector bundleL(E, b̃∗F) overM. If a connection on the tangent bundleTM is
given, we also have a canonically induced connection onL(TM, b̃∗F). Hence, we can take
the fiber and parallel derivatives of the smooth fiber bundle morphismsFb : E→ L(E, b̃∗F)
andPb : E→ L(TM, b̃∗F), yielding smooth fiber bundle morphisms:

FFb : E→ L(E,L(E, b̃∗F)) ≡ L(E⊗ E, b̃∗F),
PFb : E→ L(TM,L(E, b̃∗F)) ≡ L(TM⊗ E, b̃∗F),
FPb : E→ L(E,L(TM, b̃∗F)) ≡ L(E⊗ TM, b̃∗F),
PPb : E→ L(TM,L(TM, b̃∗F)) ≡ L(TM⊗ TM, b̃∗F).

Proposition 1. Givenvq ∈ E, we have the following relations:

1. F
2b(vq) · (wq, zq) = F

2b(vq) · (zq, wq) for all wq, zq ∈ Eq;
2. FPb(vq) · (wq, zq) = PFb(vq) · (zq, wq) for all wq ∈ Eq, zq ∈ TqM;
3. P

2b(vq) · (wq, zq) = P
2b(vq) · (zq, wq)+ Fb(vq) ·RE(zq, wq) · vq +RF (Tb̃ ·wq,Tb̃ ·

zq) · b(vq) for all wq, zq ∈ TqM, whereRE andRF are the curvature tensors of∇E and
∇F , respectively.

Finally, givenf ∈ F(E), we consider the smooth fiber bundle morphismf̃ : E→ RM,
defined byvq �→ (q, f(q)). Let us endow the vector bundleRM with the trivial connection,
that is, defined by∇e1 = 0, wheree1 : x ∈ M �→ 1 ∈ Rx. Then, for allvq ∈ E and
Xvq ∈ TvqE, we have

df(vq) ·Xvq = κRM · Tvq f̃ ·Xvq = Ff̃ (vq) · κE ·Xvq + Pf̃ (vq) · TπE ·Xvq.

We will omit henceforth the “∼” from the notation, tacitly identifyingf with f̃ , and we
will employ this formula to compute df .
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2.2. The geometry of the constraint manifold

In this subsection, we give examples and describe some notation and some facts con-
cerning the geometry of the constraint manifold.

Definition 2 (Marle). AconstraintonM is a smooth embedded submanifoldC of TM such
that the restriction toC of the projection of the tangent bundleτM : TM→ M, henceforth
denoted byπC, is a submersion. The constraint is said to belinear if C is a smooth vector
sub-bundle ofTM; we use the symbolD to denote linear constraints.

The hypothesis ofπC : C → M being a submersion ensures that, for alladmissible
velocityvq ∈ C, there exists a motion compatible with the constraintγ : (−ε, ε) → M
whose initial velocityγ̇(0) coincides withvq; this is a necessary condition for the existence
of second-order vector fields tangent toC. To check its validity, givenvq ∈ C, the fact of
πC : C→ M being a submersion implies the existence of a local smooth sectionX of πC,
defined on an open setU ⊂ M containingq and such thatX(q) = vq; an integral curve of the
vector fieldX with initial conditionq is a motion compatible withCwith initial velocity vq.

Givenq ∈ M, we denote byCq the embedded submanifoldπ−1
C [q] ⊂ TqM. This is indeed

a submanifold ofTqM, since it is a submanifold ofTM (because it is a submanifold ofC,
by the hypothesis ofπC : C→ M being a submersion, andC is a submanifold ofTM) and
it is contained in the embedded submanifoldTqM of TM.

The following proposition is used in the construction of some examples.

Proposition 2. Let S be a smooth vector bundle overM, f : TM → S a smooth fiber
bundle morphism andC := f−1[OS]. The following conditions are equivalent:

(i) f is transversal to the null sectionOS andτM|C : C→ M is a submersion(so thatC is
a constraint, closed inTM);

(ii) (∀vq ∈ TM)Ff(vq) : TqM→ Sq is surjective.

Example 1.

(a) The simplest example of a constraint that is not linear is provided by an affine constraint.
In this caseC is an affine sub-bundle ofTM: given a pair(D, Xa), whereD is a smooth
vector sub-bundle andXa ∈ D1(M), we take, for allq ∈ M, Cq = Dq +Xa(q).

(b) (Carathéodory). LetM = R
2 and denote byx = (x1, x2) ∈ R

2 the Cartesian coordinates
of the pointx ∈ R

2 and byv = (v1, v2) ∈ R
2 the corresponding velocity vector. Then,

we definef : TM→ RM by fx(v1, v2) = v2−
√

1+ v2
1 and applyProposition 2.

(c) (Marle’s[36] servomechanism). This example can be viewed as the model of a control
system formed by a rod on a vertical plane and an actuator which communicates motion
to its lower extremity along a fixed horizontal line, in order to manipulate the rod in a
certain way—seeFig. 1.

We putM = R×S1 andf : TM ≡ R
2
M → RM given byf(x, θ, ẋ, θ̇) = ẋ−h(x, θ, θ̇),

whereh : RM → R is a smooth function. Then, applyingProposition 2,C := f−1[ORM ]
is a constraint.
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Fig. 1. A servomechanism.

(d) (Isokinetic dynamics). Lete > 0. We define the constraint applyingProposition 2, with
f : TM→ RM given byf(vq) = (1/2)〈vq, vq〉 − e, see[19,23,45,56].

(e) (Benenti’s example). In[17] a non-linear, quadratic homogeneous constraint in the ve-
locities is proposed. It requires that two points in the plane have parallel velocities to
each other. We putM = R

4, and denoting byx = (x1, x2, x3, x4) the combined Carte-
sian coordinates of the two points and byv = (v1, v2, v3, v4) ∈ R

4 the corresponding
vector of the velocities, we define

fx(v1, v2, v3, v4) = det

(
v1 v2

v3 v4

)
= v1v4− v2v3.

ThenC := f−1[ORM ] \OTM is acone. That is to say, givenvq ∈ C, then(∀t > 0)tvq ∈
C. Note that it is necessary to remove the null sectionOTM from f−1[ORM ] (in other
words, we impose the additional condition that the velocities of the points cannot be
simultaneously null), in order forC to be a smooth submanifold ofTM.

SinceπC : C → M is a submersion,TπC : TC → TM is a smooth vector bundle
epimorphism; then kerTπC is a smooth vector sub-bundle ofTC, denoted henceforth by
Ver(C), and called thevertical sub-bundleof TC. This sub-bundle is integrable; indeed, for all
vq ∈ C, we haveTvq(Cq) = Vervq(C). Givenvq ∈ C, we callCvq := κV ·Vervq(C) ⊂ TqM the
subspace of virtual velocities(following the nomenclature of[5]) atvq; Cvq is the subspace
of TqM which is the image of the tangent map atvq of the inclusionCq → TqM.

Denoting byιC : C→ TM the inclusion,TC is a vector sub-bundle of the pull back vector
bundleι∗CTTM, also denoted byTTM|C. Let us endow the vertical bundle Ver(TM) with the
metric tensor induced by the metricg of M through the vertical lift, i.e. such that(∀vq ∈
TM)λvq : TqM→ Vervq(TM) is a linear isometry. Since Ver(C) is a vector sub-bundle of the
pull backι∗C Ver(TM), it makes sense to consider the orthogonal sub-bundleW of Ver(C) in
i∗C Ver(TM). That is to say, for allvq ∈ C, Wvq := Vervq(C)

⊥ is the orthogonal complement
of Vervq(C) in Vervq(TM). The vector bundleπW : W → C is called theprojection bundle
(W is the pull back by the Legendre transformationµ of Marle’s [35] projection bundleW
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overD := µ(C) ⊂ T∗M) onC, induced byg. For allvq ∈ C, the restrictions of the vertical lift
atvq toCvq and to its orthogonal complement are linear isometries:λvq : Cvq → Vervq(C)
andλvq : C⊥vq → Wvq . We denote the orthogonal projectionsTqM→ Cvq andTqM→ C⊥vq
byP(vq) andP⊥(vq), respectively.

By the construction ofW , we have the Whitney sum decompositioni∗C Ver(TM) =
Ver(C) ⊕C W . Besides, we also have the Whitney sum given by the following proposi-
tion [35].

Proposition 3. In the above situation, the following Whitney sum decomposition holds:

i∗C(TTM) = TC⊕
C
W. (5)

We denote byPC andPW the projections on the first and second factor of(5), respectively.
Note that we have made use of the hypothesis ofπC being a submersion to construct the
above splittings ofTTM|C and Ver(TM)|C.

Let us now consider the Levi–Civita connection∇ of (M, g), and the corresponding hori-
zontal sub-bundle Hor(TM) ⊂ TTM. We denote by Hor(C) the image byPC of ι∗CHor(TM).
We call Hor(C) thehorizontal sub-bundleof TC, induced byg, and we have the following
Whitney sum decomposition:

TC = Hor(C)⊕
C

Ver(C). (6)

We denote byPCH : TC→ Hor(C) andPCV : TC→ Ver(C) the projections on the first and
second factor of(6), respectively. Givenvq ∈ C, we define the vertical and horizontal lifts
in TC, λCvq := λvq ◦ Pvq = PC ◦ λvq : TqM → Vervq(C) and HCvq := (TτM|Horvq (C))

−1 =
PC ◦ Hvq : TqM→ Horvq(C).

Note that, for allvq ∈ C, HCvq : TqM → Horvq(C) andλCvq |Cvq
: Cvq → Vervq(C) are

linear isomorphisms.
In the case of a linear constraintD, the Whitney sum decomposition(6) coincide with

the one induced by the connection onD defined by∇D : D1(M) × Γ∞(D) → Γ∞(D),
∇DXY := PD · ∇XY , wherePD : TM→ D is the orthogonal projection. In that case, given
vq ∈ D, λDvq and HDvq are the usual vertical and horizontal lifts atvq, and we haveCvq = Dq,
Wvq = λvq(D

⊥
q ), so thatPD = TPD : TTM|C→ D.

We define next the fiber and parallel derivatives for mapsC→ E, whereπE : E → M
a smooth vector bundle, which preserve fibers. That is the case, for example, of the maps
P,P⊥ : C→ L(TM,TM).

Definition 3. Let πE : E → M be a smooth vector bundle, endowed with a connection
∇E, andf : C → E a smooth map such that, for allq ∈ M, f(Cq) ⊂ Eq. We define the
fiber derivativeFf : C→ L(TM, E) and theparallel derivativePf : C→ L(TM, E) by,
for all vq ∈ C:

Ff(vq) := κE ◦ Tvqf ◦ λCvq ∈ L(TqM, Eq),

Pf(vq) := κE ◦ Tvqf ◦ HCvq ∈ L(TqM, Eq).
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Therefore, givenvq ∈ C andXvq ∈ TvqC, we have

κE · Tvqf ·Xvq = Ff(vq) · κ ·Xvq + Pf(vq) · TπC ·Xvq

andFf(vq) · κ ·Xvq = Ff(vq) · Pvq · κ ·Xvq , i.e.C⊥vq ⊂ kerFf(vq).
By a previous observation, in the linear case these derivatives coincide with the fiber and

parallel derivatives defined in the previous subsection, endowingD with the connection
∇D.

As a final remark, givenf ∈ F(TM), we use the notationF�f and P
�f to denote,

respectively, the mapsg� ◦ Ff : TM → TM andg� ◦ Pf : TM → TM, whereg� is the
inverse of the Legendre transformationg� : TM→ T∗M induced by the metric tensorg.

2.2.1. Second-order vector fields onC

Definition 4. Given a constraintC ⊂ TM, the subsetP(C) := TC ∩ J2(M) of TC is called
holonomic prolongationof C (see[40]). Here,J2(M) := {z ∈ T(TM)|τTMz = TτM(z)} is
the 2-jets affine sub-bundle ofTM.

The following proposition shows thatP(C) is an affine sub-bundle ofTC.

Proposition 4. With the same notation, τTM|P(C) : P(C)→ C is a smooth affine sub-bundle
of TC. More precisely, for eachvq ∈ C,Pvq(C) is the affine subspacePC ·S(vq)+Vervq(C)
of TvqC, whereS is the geodesic spray of(M, g).

Proof. We haveP(C) = TC ∩ J2(M) = {Xvq ∈ TC|TτM · Xvq = vq}. Hence, given
vq ∈ C andXvq ∈ Pvq(C), it follows thatTτM · Xvq = vq = TτM · PC · S(vq), therefore
Xvq − PC · S(vq) ∈ TvqC ∩ Vervq(TM) = Vervq(C), that is to say,Xvq ∈ PC · S(vq) +
Vervq(C). On the other hand, givenXvq ∈ PC · S(vq) + Vervq(C), we haveXvq ∈ TvqC e
TτM · Xvq = TτM · PC · S(vq) = vq, thusXvq ∈ Pvq(C). We have then shownPvq(C) =
PC · S(vq)+ Vervq(C), for all vq ∈ C. �

Definition 5. We say thatX ∈ D1(C) is asecond-order vector field onC if it is a section of
the holonomic prolongationP(C).

Note that, given a second-order vector field onC,X ∈ Γ∞(P(C)), since(∀vq ∈ C)TτM ·
X(vq) = vq the integral curves ofX are of the formTγ/dt, whereγ is a smooth horizontal
curve onM.

3. Statement of the main results

In this section we state and describe the main results of the paper. We use the notation
from Section 2and, unless otherwise stated, we consider a fixed constrained mechanical
system(M,K,F, C).
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3.1. Gauss’ principle and the d’Alembert–Chetaev trajectories

In this subsection we define the d’Alembert–Chetaev trajectories of(M,K,F) through
Gauss’ principle of least constraint. Firstly, we introduce the concept ofadmissible reaction.

Definition 6. We say that a continuous mapR : C → TM is anadmissible reaction field
for the constrained mechanical system(M,K,F, C) if it is fiber preserving and if there
exists a second-order vector fieldXR

C onC whose maximal integral curves with fixed initial
condition exist and are unique, and whose base integral curves are solutions of Newton’s
equation with reaction term(3).

We denote byR the set of all admissible reaction fields for(M,K,F, C). If R ∈ R, we
call the base integral curves ofXR

C the trajectoriesof the constrained mechanical system
(M,K,F, C), induced by the admissible reactionR.

Remark 1. Note that, ifR is an admissible reaction field for(M,K,F, C), thenXR
C is

univocally determined byR. In fact, taking vertical lifts in(3), it follows thatXR
C must be

given by

S(vq)+ λvq{F �(vq)+ R(vq)}, (7)

whereS is the geodesic spray of(M, g).

Proposition 5. The admissible reaction fields for(M,K,F, C) are the continuous fiber
preserving mapsR : C→ TM which satisfy, for all vq ∈ C:

P⊥vq · (R(vq)) = −κ · PW · S(vq)− P⊥vq · (F �(vq)) (8)

and such that the uniqueness and existence property holds for the integral curves of the
vector fieldXR

C , where W is the projection bundle onC.

Proof. It is enough to check that, given a continuous fiber preserving mapR : C → TM,
XR
C (C) ⊂ TC if, and only if, Eq. (8)holds (whereXR

C is given byEq. (7)). Indeed, given
vq ∈ C,XR

C (vq) ∈ TvqC if, and only if 0= κ ·PW ·XR
C (vq) = κ ·PW ·λvq(F �(vq)+R(vq))+

κ · PW · Hvqvq, what is equivalent toEq. (8). �

At this point we should note that there are, in general, many possible choices for the
admissible reaction force. In a “physical” constraint, however, one could reasonably ex-
pect that the reaction should be determined by the external force and that each motion of
the system be uniquely determined by its initial velocity. The reason why this does not
happen in our model is the fact that, what we call “constraint” is, in fact, a “kinematic
constraint”. A “physical” constraint is characterized not only by kinematic constraints, but
also by a “dynamical” or “phenomenological” law[6]—something that in our model would
correspond to a rule to determine the admissible reaction field. To illustrate this fact, we
show two admissible reactions for the constrained mechanical system of the example of the
servomechanism.
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Example 2. In the example of the servomechanism (Example 1(c)), let us consider:

K(x, θ, ẋ, θ̇) = 1
2mẋ

2+ 1
2(I +ml2 cos2θ)θ̇2, V(x, θ) = mglsinθ,

wherem is the mass of the rod,I the moment of inertia of the rod with respect to its
barycentre,l the distance from the articulation with the actuator on theOx axis to the
barycentre of the rod andg the acceleration of gravity. For the sake of simplicity, let us put
m = I = l = g = 1.

A direct computation shows that the following maps are admissible reactions for
(M,K,V, C):

RA(x, θ, ẋ, θ̇) =
(

Fh(θ̇) cosθ

(1+ Fh(θ̇)2)(1+ cos2θ)
+ Ph(θ̇) · (ẋ, θ̇)

1+ Fh(θ̇)2

)
(∂x − Fh(θ̇)∂θ)

and

R(x, θ, ẋ, θ̇) =
(

Fh(θ̇) cosθ

1+ cos2θ
+ Ph(θ̇) · (ẋ, θ̇)

)
∂x.

The reactionRA has minimal intensity among all admissible reaction fields; the solutions
of Newton’sequation (3)with reaction termRA are the d’Alembert–Chetaev trajectories
of the constrained mechanical system(M,K,V, C) (seeTheorem 1andDefinition 8). The
reactionR, on the other hand, is the admissible reaction which corresponds to the physical
hypothesis of the articulation being frictionless and of the actuator introducing no torque
on the articulation (i.e.R has no term in∂θ).

LetXF : TM→ T(TM)be the GMA vector field of the unconstrained mechanical system
(M,K,F) (i.e. the second-order vector field whose base integral curves are the solutions of
Newton’sequation (2)). That is to say,XF : vq ∈ TM �→ S(vq)+ λvq{F �(vq)}. Using the
Whitney sum decompositionTTM|C = TC ⊕C W , the restriction ofXF to the constraint
manifoldC splits into a sumXF|C = XC +XW , whereXC is a smooth second-order vector
field onC andXW a smooth section of the projection bundleW .

Definition 7. Using the notation above, we call the second-order vector fieldXC ∈ D1(C)
the Gibbs–Maggi–Appell (GMA) vector field of the constrained mechanical system
(M,K,F, C).

We show inTheorem 1that the GMA vector field of(M,K,F, C) is induced by an
admissible reactionRA that has the remarkable property of minimizing the intensity of the
admissible reactions.

3.1.1. Gauss’ principle of least constraint
For a linear constraintD, there exists a unique admissible reactionRA : D → TM

satisfying the so-called “d’Alembert’s principle”. That is to say,RA is orthogonal to the
constraint, in the sense that(∀vq ∈ D)RA(vq) ⊥ Dq, i.e.(∀wq ∈ Dq)〈RA(vq), wq〉 = 0.

On the other hand, it can be easily checked that, ifC is a non-linear constraint, in general
there is no admissible reaction satisfying the above condition, i.e. orthogonal to the constraint
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manifold on each fiber ofTM. However, we prove in the next theorem that there exists a
unique admissible reaction satisfying Gauss’ principle of least constraint, in the sense that
it has minimal intensity among all admissible reaction fields. If the constraint is linear,
this admissible reaction coincides with that given by d’Alembert’s principle; in this sense,
we can consider Gauss’ principle of least constraint as a generalization of d’Alembert’s
principle for constraints which are non-linear in the velocities.

Theorem 1 (Gauss’ principle of least constraint).There exists a unique smooth admissible
reaction fieldRA ∈ R such that, for all vq ∈ C:
‖RA(vq)‖ = min

R∈R
‖R(vq)‖. (9)

Moreover, the solutions of Newton’s equation(3) with reaction termRA coincide with the
base integral curves of the GMA vector fieldXC—in particular they are smooth—i.e.XC
coincides with the second-order vector fieldXRA

C induced by the admissible reactionRA.

Definition 8. The base integral curves of the GMA vector fieldXC (or, equivalently, by the
previous theorem, the solutions of Newton’sequation (3)with reaction termRA) are called
thed’Alembert–Chetaev trajectories of(M,K,F, C).

3.1.2. Gibbs–Appell equations
To close this subsection, we show that the d’Alembert–Chetaev trajectories are solutions

of the so-calledGibbs–Appell equations[43] of the mechanical system.
We define theSasaki metric tensorgTM on TM (see[46,47,57]) by, for all vq ∈ TM,

Xvq, Yvq ∈ TqM: 〈Xvq, Yvq〉TvqTM := 〈κ · Xvq, κ · Yvq〉TqM + 〈TτM · Xvq,TτM · Yvq〉TqM,
whereκ : TTM→ TM is the connector induced by the Levi–Civita connection of(M, g).
With this metric the horizontal and vertical spaces are orthogonal to each other. With the
Sasaki metricgTM, we define the Gibbs–Appell function of(M,K,F).

Definition 9. Given a mechanical system(M,K,F), we define itsGibbs–Appell function
G : TTM→ R (see[34,43]) by, for allXvq ∈ TTM:

G(Xvq) = 〈λvq(−F �(vq))+ 1
2(Xvq − S(vq)),Xvq − S(vq)〉TvqTM,

whereS is the geodesic spray of(M, g).

The following proposition is a corollary fromTheorem 1.

Proposition 6 (Gibbs–Appell).The GMA vector fieldXC is the unique second-order vector
field onC such that, on each fiberPvq(C) of the holonomic prolongation ofC, vq ∈ C,
minimizes the Gibbs–Appell functionG. That is to say, for all vq ∈ C, we have

G(XC(vq)) = min
Xvq∈Pvq (C)

G(Xvq).
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3.2. Hölder’s and Hertz’s principles

In this subsection we show that, if the external forceF derives from a potential V∈
F(M), the d’Alembert–Chetaev trajectories of(M,K,V, C) satisfy Hölder’s principle—
Theorem 2. In the free mechanicscase (i.e.F = 0), if the constraint is a cone, they also
Hertz’s principle of minimal geodesic curvature—Theorem 3.

3.2.1. Hölder’s principle
We assume in this subsection that the external forceF of the constrained mechanical

system derives from a potential V∈ F(M), and we define the LagrangianL : TM→ R by
L(vq) := K − V ◦ τM.

Hölder’s principle—Theorem 2—will be stated in terms of some Banach manifolds which
we describe below.

3.2.1.1. Some spaces of curves.Givenk ≥ 0 and a closed interval [a, b] ⊂ R, we denote
by Ck(M, [a, b]) the set of all curvesγ : [a, b] → M of classCk. For k ≥ 1, we denote
by Hk(M, [a, b]) the set of all curvesγ : [a, b] → M of classHk (a curveγ : [a, b] → M
is of classHk if, taking a smooth embeddingι : M→ R

N , whose existence is ensured by
Whitney’s theorem,ι ◦ γ is a curve of classHk in R

N , that is to say, it is absolutely contin-
uous and its derivative belongs toHk−1, with H0 = L2; for k ≥ 1, this definition does not
depend on the choice of the embedding). If the interval [a, b] is fixed and there is no risk of
confusion, we use the abbreviated notationsCk(M) andHk(M) instead ofCk(M, [a, b]) and
Hk(M, [a, b]), respectively. These sets (fork ≥ 0 in theCk case, andk ≥ 1 in theHk case)
admit Banach manifold structures (i.e. smooth manifolds modeled on Banach spaces, see
[32,33]or [2], for example) naturally defined—see[17,21,42,44]or [16]. More precisely,
the spacesHk, k ≥ 1, admit Hilbert manifold structures. Such smooth manifold structures
are such that, given a proper smooth embeddingι : M→ R

N (which exists, by Whitney’s
theorem), then the application(ι◦) : γ �→ i ◦ γ is a smooth embedding ofCk(M) (respec-
tively, Hk(M)) into the Banach spaceCk(RN) (respectively, into the Hilbert spaceHk(RN))
andCk(M) is closed inCk(RN) (respectively,Hk(M) is closed inHk(RN)). This property
determines univocally the smooth manifold structures ofCk(M) andHk(M). In particular,
the manifoldsCk(M) andHk(M) are metrizable (hence, paracompact) and separable. The
inclusionsCk(M) → Hk(M) → Ck−1(M), k ≥ 1, are smooth and have dense images.
Besides, given a finite dimensional smooth manifoldN and a smooth mapφ : M→ N, the
map(φ◦) : γ �→ φ ◦ γ is smooth fromCk(M) (respectively,Hk(M)) with values inCk(N)
(respectively,Hk(N)). For allγ ∈ Ck(M) (respectively,γ ∈ Hk(M)), the tangent space atγ
is the set of all sections ofTM alongγ of classCk (respectively, of classHk), that is to say:

TγCk(M) = Ck(γ∗TM) = {X ∈ Ck(TM)|τM ◦X = γ}
and similarly forTγHk(M). Hence, the tangent bundlesτCk(M) : TCk(M) → Ck(M) and

τHk(M) : THk(M)→ Hk(M) are naturally isomorphic to, respectively,(τM◦) : Ck(TM)→
Ck(M) and(τM◦) : Hk(TM)→ Hk(M).

More generally, given a smooth finite dimensional vector bundleπE : E → M, we
have smooth vector bundles(πE◦) : Ck(E)→ Ck(M), for k ≥ 0, and(πE◦) : Hk(E)→
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Hk(M), for k ≥ 1. These constructions are functorial, that is, given a smooth vector bundle
morphismφ : E→ F overφ̃ : M→ N, we obtain smooth vector bundle morphisms(φ◦) :
Ck(E) → Ck(F) over (φ̃◦) : Ck(M) → Ck(N), for k ≥ 0, and(φ◦) : Hk(E) → Hk(F)

over(φ̃◦) : Hk(M)→ Hk(N), for k ≥ 1.

3.2.1.2. The initial and the endpoint mappings.With the notation described above, let
k ≥ 0 and let us consider the mapevi : Ck(M) → M defined byγ �→ γ(a), called
the initial point mapping. This map is clearly smooth: taking a smooth embeddingM →
R
N given by Whitney’s theorem,evi : Ck(RN) → R

N is linear continuous, hence its
restriction to the embedded submanifoldCk(M) is smooth and takes values in the embedded
submanifoldM ⊂ R

N . Moreover, its tangent map atγ ∈ Ck(M) is given byX ∈ TγCk(M) ≡
Ck(γ∗TM) �→ X(a) ∈ Tγ(a)M, which is clearly surjective, and its kernel splits (i.e. admits
a closed complementary subspace), since it has finite codimension inTγCk(M). Hence, we
have shown thatevi is a smooth submersion. Givenp ∈ M, its inverse imageev−1

i [p] is
a closed embedded submanifold ofCk(M), which we denote henceforth byCk(M, p), and
its tangent space atγ ∈ Ck(M, p) is given by{X ∈ TγCk(M)|X(a) = 0}.

We can apply the same arguments we have used for the initial point mapping to conclude
that theendpoint mapping evf : Ck(M) → M, γ �→ γ(b), is also a smooth submersion.
Givenp ∈ M, the restriction ofevf to the embedded submanifoldCk(M, p) is still a smooth
submersion, by the same arguments; the inverse image by this last map ofq ∈ M is a closed
embedded submanifold ofCk(M, p), which we denote byCk(M, p, q). The tangent space
atγ ∈ Ck(M, p, q) is given by{X ∈ TγCk(M)|X(a) = 0, X(b) = 0}.

All that we have done for theCk case also applies to the Sobolev spacesHk, for k ≥ 1:
we use the same notation for the initial and endpoint mappings, and we have corresponding
closed embedded submanifoldsHk(M, p), Hk(M, p, q) ⊂ Hk(M), givenp, q ∈ M.

3.2.1.3. Hölder’s principle. In Theorem 2, we denote byH1(Cγ̇ , [a, b], γ(a), γ(b)) the
closed linear subspace ofTγH1(M, [a, b]) formed by the infinitesimal variationsη ∈ TγH1

(M, [a, b], γ(a), γ(b)) such that, for allt ∈ [a, b], η(t) is a virtual velocity aṫγ(t) ∈ C, i.e.
H1(Cγ̇ , [a, b], γ(a), γ(b)) := {η ∈ TγH1(M, [a, b], γ(a), γ(b))|η(t) ∈ Cγ̇(t) a.e.on [a, b]}.

We consider theLagrangian functionalL : γ �→ ∫ b
a

L(γ̇) induced by L as a smooth map
H1(M, [a, b])→ R. The smoothness ofL on H1(M, [a, b]) follows from the fact thatL is
the difference of the smooth mapsγ ∈ H1(M, [a, b]) �→ ∫ b

a
〈γ̇, γ̇〉 andγ ∈ H1(M, [a, b]) �→∫ b

a
V ◦ γ. The second of these maps is smooth, since it can be written as the composition

of smooth maps
(∫ b

a

)
◦ (V◦), where(V◦) : H1(M, [a, b]) → H1(R, [a, b]) and

(∫ b
a

)
:

H1(R, [a, b])→ R. On the other hand, to check the smoothness ofγ ∈ H1(M, [a, b]) �→∫ b
a
〈γ̇, γ̇〉, take an isometric embedding(M, g)→ R

N , for sufficiently largeN, which exists
by Nash–Moser’s theorem; thenγ ∈ H1(RN, [a, b]) �→ ‖γ̇‖2

L2 is obviously smooth, and so

is its restriction to the embedded submanifoldH1(M, [a, b]).

Theorem 2 (Hölder’s principle).A horizontal curveγ ∈ H2(M, [a, b]) is a d’Alembert–
Chetaev trajectory of the constrained mechanical system(M,K,V, C) if, and only if, dL(γ)
annihilates the subspaceH1(Cγ̇ , [a, b], γ(a), γ(b)) of TγH1(M, [a, b]).
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Remark 2. In [49] we have constructed Banach manifold structures on the spaces of hor-
izontal curvesHk(M, C, [a, b]) := {γ ∈ Hk(M, [a, b])|γ is horizontal}, for k ≥ 2 (and also
on Ck(M, C, [a, b]) := {γ ∈ Ck(M, [a, b])|γ is horizontal}, for k ≥ 1), and then we have
defined thevariational trajectoriesof the constrained mechanical system as critical points
of the Lagrangian functionalL on these Banach manifolds of horizontal curves. For lin-
ear constraints, its well known (see[5], for instance) that these trajectories coincide with
the d’Alembert–Chetaev trajectories (which, in the linear case, coincide with the classical
d’Alembertian trajectories of the constrained mechanical system, i.e. the trajectories defined
by d’Alembert’s principle) if, and only if, the constraint is integrable (i.e. they coincide only
for holonomicconstraints). We have generalized this condition for the general (non-linear)
case in[49].

3.2.2. Hertz’s principle
We recall that, given a curveγ on M, its geodesic curvatureκγ(t) at t ∈ domγ is given

by‖∇s|s=0γ̃‖, whereγ̃ is a reparametrization by arc length ofγ with γ̃(0) = γ(t) (see[48]).
The theorem that closes this section states that, in the case of a free mechanics (i.e. if the

external forceF is null), if the constraint manifoldC is acone(i.e. vq ∈ C implies (∀t >
0)tvq ∈ C) the d’Alembert–Chetaev trajectories of(M,K,0, C) satisfy Hertz’s principle of
least geodesic curvature. That is to say, except for reparametrizations, a horizontal curveγ

is a d’Alembert–Chetaev trajectory of(M,K,0, C) if, and only if, for eacht on its domain,
its geodesic curvature att is the greatest lower bound of the set of the geodesic curvatures
at t of all horizontal curves defined on a neighborhood oft and with the same velocity att,
γ̇(t).

Theorem 3 (Hertz’s principle of least curvature).Assume that the constraint manifoldC is
a cone, and letγ be a horizontal curve onM. Then there exists a reparametrization ofγ

which is a d’Alembert–Chetaev trajectory of(M,K,0, C) if, and only if, for all t ∈ domγ:

κγ(t) = min{κα(0)|α : (−ε, ε)→ M horizontalwith α̇(0) = γ̇(t)}.

3.3. Conservation of energy

It is a well known fact that, for a linearly constrained mechanical system(M,K,V,D)
on which the external force derives from a potential V∈ F(M), the mechanical energy
EC := K|C +V ◦ πC is a first integral of the flow of the GMA vector fieldXD—see[41]. It
is then natural to inquire under which conditions the same occurs for a general (non-linear)
constraintC. We show inProposition 7, that this is a characteristic of homogeneous con-
straints, in the sense of the following definition.

Definition 10. We say that a constraintC ⊂ TM is homogeneousif the Liouville vector
field Z ∈ D1(TM) (i.e. the vector field onTM defined byvq ∈ TM �→ λvqvq ∈ TTM) is
tangent toC.

Example 3. If C is acone(i.e. if vq ∈ C implies(∀t > 0)tvq ∈ C), then it is a homogeneous
constraint. Linear constraints and also the constraint fromExample 1(e) are cones.
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Proposition 7. Let (M, g) be a Riemannian manifold, K : TM → R the kinetic energy
induced byg andC ⊂ TM a constraint. The following conditions are equivalent:

(i) for all potentialV ∈ F(M), the mechanical energyEC = K|C+V ◦πC is a first integral
of the flow of the GMA vector fieldXV

C ;
(ii) C is a homogeneous constraint.

We note that the implication (ii)⇒ (i) was already known in formulations slightly different
from ours—see[10,15,35,51].

As a corollary, we show that, for fixed(M,K, C), with C closedin TM—as is the case of a
constraint given byProposition 2—then the GMA vector field of the constrained mechanical
system(M,K,V, C) conserves the mechanical energy for all potentials V∈ F(M) if, and
only if, C is a linear constraint.

Corollary 1. With the same hypothesis, if C is closed inTM,both conditions in the statement
of Proposition 7are equivalent toC being a linear constraint.

Finally, the following corollary follows from the previous corollary and from[12,50].
We recall that a Poisson bracket{·, ·} on C is anR-bilinear anti-symmetric form onF(C),
satisfying both Jacobi’s identity (i.e. turningF(C) a Lie algebra overR) and Leibniz’s
identity (i.e.,{·, ·} is a derivation on the second factor).

Corollary 2. With the same notation, the following conditions are equivalent:

1. (C, {·, ·}) is a Poisson manifold, closed inTM, and for all φ ∈ F(C) of the formφ =
K|C + V ◦ πC, V ∈ F(M), the GMA vector fieldXC of (M,K,V, C) coincides with the
Hamiltonian vector fieldξCφ induced byφ., i.e. ξCφ[ψ] = {ψ, φ}, for all ψ ∈ F(C);

2. C a completely integrable smooth vector sub-bundle ofTM, i.e. it is a holonomic con-
straint.

See also[10], where an “almost-Poisson” bracket is constructed for systems with non-
holonomic constraints.

3.4. The Jacobi–Carathéodory metric tensor

Given an unconstrained mechanical system(M,K,V), with the external force deriving
from a potential V∈ F(M), it is well known the “Jacobi–Carathéodory theorem”: fore > 0
such that V< e onM, this theorem allows, through the introduction of a convenient metric
tensor onM (the so-called Jacobi–Carathéodory metric tensorge, seeDefinition 11) reduce
the study of the trajectories of(M,K,V) with energy K+V ◦ τM = const. = e to the study
of the geodesics of the Riemannian manifold(M, ge) with energy 1—see[1].

We assume, throughout this subsection, that the constraint manifoldC is a cone. In
particular,C is homogeneous, i.e. the Liouville vector fieldZ ∈ D1(TM) is tangent toC. It
then follows fromProposition 7that, for all potentials V∈ F(M), the mechanical energy
K|C + V ◦ πC is conserved by the flow of the GMA vector field of(M,K,V, C). In this
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subsection we generalize the Jacobi–Carathéodory theorem for a constrained mechanical
system of this type—seeTheorem 4.

Definition 11. With the above notation, assume that there existse > 0 such that, for all
q ∈ M, V(q)e. We define theJacobi–Carathéodory metric tensoronM by

ge := (e− V)g. (10)

Theorem 4. With the above notation, letγ : [a, b] → M be a smooth horizontal curve such
that K(γ̇) + V ◦ γ = const. = e and letγ̃ : [0, L] → M be the reparametrization by arc
length ofγ in the Jacobi–Carathéodory metricge.Denote byKe the kinetic energy associated
to ge. Thenγ is a d’Alembert–Chetaev trajectory of the constrained mechanical system
(M,K,V, C) if, and only if, γ̃ is a d’Alembert–Chetaev trajectory of the free constrained
mechanical system(M,Ke,0, C).

As a corollary from this theorem and fromTheorem 3, we obtain the following.

Corollary 3. With the same notation, there exists a reparametrization ofγ which is a
d’Alembert–Chetaev trajectory of the constrained mechanical system(M,K,V, C) if, and
only if, it minimizes the geodesic curvature in the Jacobi–Carathéodory metric, in the sense
that, for all t ∈ domγ:

κγ(t) = min{κα(0)|α : (−ε, ε)→ M horizontalwith α̇(0) = γ̇(t)},
where the geodesic curvaturesκ are taken with respect to the Jacobi–Carathéodory metric
tensor.

3.5. The Liouville’s theorem for the Gibbs–Maggi–Appell vector field

In this subsection, we fix a Riemannian manifold(M, g) and a constraintC ⊂ TM. We
denote by K the kinetic energy induced by the metric tensorg. Our aim, in this section, is
to generalize to the context of constrained mechanical systems the celebrated Liouville’s
theorem on the conservation of volume: for all potentials V∈ F(M), the flow of the GMA
vector fieldXV of the (unconstrained) mechanical system(M,K,V) preserves the Liouville
volume—i.e. the volume form onTM induced by the Sasaki metric tensorgTM defined in
Section 3.1.2.

Firstly, we define a metric tensor onC through a construction which generalizes that of
the definition of the Sasaki metric tensor onTM.

Definition 12 (The Sasaki metric tensor onC). TheSasaki metric tensoror, simply, the
Sasaki metricon C is the unique metric tensorgC on C such that, for allvq ∈ C, λCvq |Cvq

:

Cvq → Vervq(C) and HCvq : TqM→ Horvq(C) are linear isometries.

Thus, endowingC with the metric tensorgC, we have Hor(C) = Ver(C)⊥ and, for all
vq ∈ C, Xvq, Yvq ∈ TvqC:
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gC(Xvq, Yvq)= 〈PH ·Xvq, PH · Yvq〉HorCvq
+ 〈PV ·Xvq, PV · Yvq〉VerCvq

= 〈TπC ·Xvq,TπC · Yvq〉 + 〈P(vq) · κ ·Xvq,P(vq) · κ · Yvq〉.
Note that, in the unconstrained case, i.e. ifC = TM, the Sasaki metric tensor onC coincides
with the one previously defined inSection 3.1.2.

The smooth map given by the following definition has an important role in the general-
ization of Liouville’s theorem.

Definition 13. We denote byA : C → L(TM,TM) the smooth map defined by, for all
vq ∈ C, A(vq) := κ ◦ PC ◦ Hvq : TqM → TqM, whereκ is the connector induced by the
Levi–Civita connection of(M, g).

Remark 3. For a linear constraintD, a direct computation shows that the mapA of the
previous definition is given by, for allvq ∈ D, A(vq) = BD(vq), whereBD : TM⊕M D→
D⊥ is thetotal second fundamental form of(M, g,D)—see[31]—andBD(vq) = BD(·, vq) :
TqM → D⊥q . In this sense, the mapA of the previous definition plays the role, in the
non-linearly constrained case, of the total second fundamental form.

Note that, for allvq ∈ C, we haveA(vq) = −κ ◦ PW ◦Hvq , hence ImA(vq) ⊂ C⊥vq . This
follows from the following facts: (1)κ ◦ Hvq = 0 and (2)PC + PW = idi∗C(TTM). Besides,
givenXvq ∈ TvqTM, we haveXvq ∈ TvqC if, and only if:

P⊥(vq) · κ ·Xvq = A(vq) · TτM ·Xvq. (11)

Indeed, the last equation is clearly equivalent toκ · PW ·Xvq = 0⇔ PW ·Xvq = 0.
In order to enunciateTheorem 5, we shall make use of the following notation.
Notation.Givenq ∈ M, vq ∈ Cq andwq ∈ TqM, we denote byF∗P(vq) · wq the adjoint

map ofFP(vq) ·wq : TqM→ TqM with respect to the metric tensor. This defines the map:
F
∗P : C→ L(TM,L(TM,TM)) ≡ L(TM⊗ TM,TM).
The main result of this subsection is the following theorem.

Theorem 5. The Lebesgue measure onC induced by the Sasaki metricgC is preserved by
the flow of the GMA vector fieldXV

C of the constrained mechanical system(M,K,V, C), for
all potentialsV ∈ F(M), if, and only if, the two following conditions are fulfilled, for all
vq ∈ C:
(i) tr A(vq) = 0;

(ii) tr F
∗P(vq)|Cvq×Cvq

= 0.

The proof of this theorem is based on the computation of the Levi–Civita connection of
(C, gC)with respect to a convenient moving frame and of the divergence of the GMA vector
field; as a by-product of these computations, we generalize a result from[46] concerning the
geodesics of the Sasaki metric—seeProposition 8. Other secondary results areCorollary 4,
which gives a necessary and sufficient condition for the integrability of the horizontal
sub-bundle ofTC, andCorollary 5, which states that, if conditions (i) and (ii) inTheorem 5
are fulfilled, then, for eachq ∈ M, Cq is a minimal surface of(C, gC). That is to say, a
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necessary condition for the Lebesgue measure onC induced by the Sasaki metric to be
preserved by the flow of the GMA vector fieldXV

C , for all potentials V∈ F(M), is that
(C, gC) admit a regular foliation by minimal surfaces.

Example 4. Conditions (i) and (ii) ofTheorem 5are satisfied by the constraint from
Example 1(e). Indeed, in this example we have:M = R

4, (∀x ∈ M)Cx = {(v1, v2, v3, v4) ∈
R

4
x \ {Ox}|det

(
v1 v2

v3 v4

)
= 0}. We use the following notation: givenv = (v1, v2, v3, v4) ∈

R
4, we put|!v := (v4,−v3,−v2, v1) andv′ := (−v2, v1,−v4, v3). For allvx = (x, v) ∈ C,

we haveC⊥vx = [!v] ⊂ TxM = R
4
x, Cvx = [!v]⊥, Wvx = λvxC

⊥
vx
= [(0, !v)vx ] ⊂ TvxTM =

(R4 × R
4)vx , TvxC = {Yvx = (Y1, Y2)vx ∈ TvxTM|Y2 ∈ Cvx = [−→vx ]⊥}. Hence, for all

x ∈ M, vx,wx ∈ Cx:

A(vx) · wx = −κ · PW · Hvxwx = −κ · PW · (w,0)vx = 0,

soA ≡ 0, i.e. condition (i) is trivially fulfilled.
On the other hand, a direct computation shows that, for allx ∈ M, vx ∈ Cx,wx, sx ∈ Cvx :

F
∗P(vx) · (wx, sx) = −〈sx,−→wx〉

−→vx
‖vx‖2 .

Therefore

F
∗P(vx) · (wx,wx) = −〈wx,

−→wx〉
−→vx
‖vx‖2 = −2 det

(
w1 w2

w3 w4

) −→vx
‖vx‖2 .

Using the last formula and the orthonormal basis((v/‖v‖), (v′/‖v‖), (−→v′ /‖v‖)) of Cvx =
[−→vx ]⊥ to computeF∗P(vx)|Cvx×Cvx

, we conclude that condition (ii) holds, as asserted.

Remark 4.

(a) Note that, for a linear constraintD, conditions (i) and (ii) fromTheorem 5are equivalent
to the condition derived in[31] for the conservation of the local volume form defined
there, i.e. to the condition trBD⊥(q)|D⊥q ×D⊥q = 0 for allq ∈ M, whereBD : TM⊕MD→
D⊥ is thetotal second fundamental form of(M, g,D). Indeed, it can be easily checked
that the above mentioned volume form coincides with the Riemannian volume induced
by the Sasaki metricgD onD. To check the equivalency of the conditions, note that,
for a linear constraint,PD = TPD : i∗D(TTM) → TD, wherePD : TM → D is the
orthogonal projection, and, for allvq ∈ D, Cvq = Dq. Hence,P : vq ∈ D �→ (PD)q ∈
L(TM,TM) is constant on the fibers ofπD : D→ M. Thus,FP = 0 and condition (ii)
from Theorem 5is trivially fulfilled.

Besides, as we have pointed out inRemark 3, a direct computation shows that, for
all vq ∈ C, A(vq) = BD(vq), whereBD(vq) = BD(·, vq) : TqM → D⊥q . Therefore,
given a smooth orthonormal frame(X1, . . . , Xn) on a neighborhoodU of q in M,
adapted toDq (i.e. such that(X1(q), . . . , Xr(q)) is a basis ofDq, wherer = rkD),
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we have

trA(vq)=
n∑
i=1

〈Xi(q), BD(Xi(q), vq)〉 =
n∑

i=l+1

〈Xi(q), BD(Xi(q), vq)〉

=−
n∑

i=l+1

〈BD⊥(Xi(q),Xi(q)), vq〉 = −〈trBD⊥|D⊥q ×D⊥q , vq〉

what shows that condition (i) fromTheorem 5is equivalent to, for allq ∈ M, trBD⊥
(q)|D⊥q ×D⊥q = 0.

(b) Also with respect to the linearly constrained case, we refer the reader to[9], where
a necessary and sufficient condition for the existence of an invariant measure for the
dynamics of generalized Chaplygin systems was obtained.

Corollary 4. The vector sub-bundleHor(C) of TC is involutive if, and only if, for all q ∈ M,
vq ∈ Cq, wq, zq ∈ TqM:

P(vq) · R(wq, zq) · vq = P(vq) · PA(vq) · (zq, wq)− P(vq) · PA(vq) · (wq, zq).

(12)

Remark 5. In the case of a linear constraintD, we have, for allvq ∈ C,A(vq) = BD(vq) :=
BD(·, vq) : TqM → D⊥q , whereBD : TM ⊕M D → D⊥ is the total second funda-
mental form ofD. Computing the parallel derivativePA and using Gauss’ formula, we
conclude thatEq. (12)is equivalent toRD ≡ 0, whereRD is the curvature tensor of the
connection induced onD by the Levi–Civita connection of(M, g) and by the orthogo-
nal projectionPD : TM → D. That is to say, we have reobtained the well known fact
that the horizontal sub-bundle Hor(D) is involutive if, and only if, the connection∇D
is flat.

Corollary 5. Suppose that the Lebesgue measure onC induced by the metric tensorgC is
preserved by the flow of the GMA vector fieldXV

C of the constrained mechanical system
(M,K,V, C), for all potentialsV ∈ F(M). Then, for all q ∈ M such thatCq #= ∅, Cq is a
minimal surface of(C, gC); that is to say, the Riemannian manifold(C, gC) admits a regular
foliation by minimal surfaces.

The following proposition, which closes this section, generalizes a result from[46].

Definition 14. We say that a constraintC ⊂ TM is totally geodesicif the geodesic spray
from (M, g) is tangent toC.

Proposition 8. Letγ be a d’Alembert–Chetaev trajectory of the free constrained mechan-
ical system(M,K,0, C). Thenγ̇ is a geodesic of(C, gC) if, and only if, γ is a geodesic of
(M, g). Hence, the canonical lifts of the d’Alembert–Chetaev trajectories of(M,K,0, C)
are geodesics of(M, g) if, and only if, C is totally geodesic.
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Remark 6.

(a) A linear constraintD is totally geodesic, i.e.κ · PW · S(vq) = −BD(vq, vq) = 0 for
all vq ∈ D if, and only if,BD|sD⊕MD

= 0, that is to say, if the symmetric part of the
restriction ofBD toD⊕M D is identically null.

(b) PuttingC = TM, we reobtain the result from[46] which states that the canonical lifts
of the geodesics of(M, g) are geodesics of(TM, gTM).

4. Proof of the main results

4.1. Gauss’ principle and the d’Alembert–Chetaev trajectories

Proof of Theorem 1. LetRA : C→ TM be the admissible reaction field for(M,K,F, C)
defined by, for allvq ∈ C:

RA(vq) := −κ · PW(XF(vq)), (13)

whereXF : vq ∈ TM �→ S(vq) + λvq(F
�(vq)) ∈ TvqTM is the GMA vector field of

(M,K,F).
Note thatRA is smooth andXRA

C = XF|C − PW ◦ XF|C = XC is the GMA vector field
of (M,K,F, C), henceRA is, indeed, an admissible reaction field.

Let R ∈ R andvq ∈ C. Let us definewq := R(vq) − RA(vq) ∈ TqM. Thenλvqwq ∈
TvqC∩Vervq(TM) = Vervq(C), since it is obviously vertical andP⊥vq ·wq = P⊥vq ·R(vq)−P⊥vq ·
RA(vq) = 0, byEq. (8). On the other hand, we haveλvq(R

A(vq)) ∈ Wvq = Vervq(C)
⊥ ⊂

Vervq(TM), thus〈λvqwq, λvq(R
A(vq))〉 = 0. It then follows that

〈λvq(R(vq)), λvq(R(vq))〉 = 〈λvq(RA(vq)), λvq(R
A(vq))〉 + 〈λvqwq, λvqwq〉

+2〈λvq(RA(vq)), λvqwq〉︸ ︷︷ ︸
=0

≥ 〈λvq(RA(vq)), λvq(R
A(vq))〉

and the equality holds if, and only if,λvqwq = 0, i.e.wq = R(vq)− RA(vq) = 0.
Sinceλvq : TqM→ Vervq(TM) is a linear isometry, and sincevq ∈ C andR ∈ R were

arbitrarily taken, we have shown that, for all admissible reactionsR ∈ R and for allvq ∈ C,
‖RA(vq)‖ ≤ ‖R(vq)‖, and that, ifR ∈ R satisfies(∀vq ∈ C )‖RA(vq)‖ = ‖R(vq)‖, then
R = RA. �

Proof of Proposition 6. It is sufficient to note that

G(Xvq) = 1
2‖Xvq −XF(vq)‖2gTM

− 1
2‖λvqF �(vq)‖2gTM

,

whereXF is the GMA vector field of the (unconstrained) mechanical system(M,K,F ),
and applyTheorem 1, the formula forXR

C given byEq. (7)andLemma 1. �
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Lemma 1. Let (M,K,F, C) be a constrained mechanical system andP(C) the holonomic
prolongation ofC (seeDefinition 4). Then, for allvq ∈ C:

Pvq(C) = {XR
C (vq)|R ∈ R},

whereR is the set of admissible reactions for(M,K,F, C) andXR
C is given byEq. (7).

Proof. Given vq ∈ C, the inclusion{XR
C (vq)|R ∈ R} ⊂ Pvq(C) is clear, sinceXR

C is a
second-order vector field onC, for all R ∈ R. To check the other inclusion, letXvq ∈
Pvq(C). SinceP(C) ⊂ J2(M), there exists a second-order vector fieldX̃ : TM → TTM
such thatX̃(vq) = Xvq . Let X : C → TC be the vector field defined byX(wq) = PC ·
X̃(wq), for all wq ∈ C. As X(vq) = PC · Xvq = Xvq (sinceXvq ∈ TvqC), we achieve
the demonstration once we show that there exists an admissible reactionR ∈ R such that
X = XR

C . As a matter of fact, defineR : wq ∈ C �→ κ · X(wq) − F �(vq) ∈ TM. Then,
the fact ofX being a second-order vector field onC implies thatP⊥wq

· κ · X(wq) + κ ·
PW · S(vq) = 0, for all wq ∈ C, henceR satisfiesEq. (8), i.e.R ∈ R andX = XR

C , as
asserted. �

4.2. Hölder’s and Hertz’s principles

Proof of Theorem 2. Givenη ∈ TγH1(M, [a, b]), let s ∈ (−ε, ε) �→ γs ∈ H1(M, [a, b])
such that(Tγs/ds)|s=0 = η. Then we have

dL(γ) · η= d

ds

∣∣∣∣
s=0

∫ b

a

K(γ̇s)− V(γs) =
∫ b

a

〈∇tη, γ̇〉 − 〈grad V(γ), η〉

γ∈H2

= 〈η, γ̇〉|ba −
∫ b

a

〈∇t γ̇ + grad V(γ), η〉.

Hence, for allη ∈ H1(Cγ̇ , [a, b], γ(a), γ(b)):

dL(γ) · η = −
∫ b

a

〈∇t γ̇ + grad V(γ), η〉. (14)

Assume thatγ is a d’Alembert–Chetaev trajectory, i.e. a solution of Newton’sequation (3)
with reaction termRA (whereRA is given byTheorem 1). Since(∀vq ∈ C)P(vq) ·RA(vq) =
0, it follows that, for allt ∈ [a, b], Pγ̇ · (∇t γ̇ + grad V(γ)) = 0, hence dL(γ) · η = 0 for all
η ∈ H1(Cγ̇ , [a, b], γ(a), γ(b)).

Reciprocally, assume that dL(γ) · η = 0 for all η ∈ H1(Cγ̇ , [a, b], γ(a), γ(b)). Then
it follows from (14) thatPγ̇ · (∇t γ̇ + grad V(γ)) = 0 a.e. on [a, b]. On the other hand,
asγ is a horizontal curve, we must haveP⊥γ̇ · ∇t γ̇ = −P⊥γ̇ · grad V(γ) + RA(γ̇) a.e. on
[a, b]. Therefore, summing the two last equations, we conclude thatγ satisfies Newton’s
equation (3)with reaction termRA a.e. on [a, b], i.e. γ is a d’Alembert–Chetaev trajectory
of (M,K,V, C). �
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Proof of Theorem 3.

(i) It is enough to consider curves which are parametrized by arc length. This is a con-
sequence of the following facts: (1) the geodesic curvature is independent of the
parametrization; (2) sinceC is a cone, if a curve is horizontal, so is its arc length
reparametrization; (3) if a curve is a d’Alembert–Chetaev trajectory of(M,K,0, C), so
is its arc length reparametrization (this follows from the fact that, byProposition 7, the
kinetic energy K is constant along the d’Alembert–Chetaev trajectories of
(M,K,0, C)).

(ii) Assume thatγ is a horizontal curve parametrized by arc length, and taket ∈ domγ. Let
vq := γ̇(t) ∈ C. For any horizontal curveα : (−ε, ε)→ M parametrized by arc length
such thaṫα(0) = vq, we haveκα(0)2 = ‖∇t|t=0α̇‖2 = ‖Pvq · ∇t|t=0α̇‖2+‖RA(vq)‖2,
sinceα horizontal impliesP⊥vq · ∇t|t=0α̇ = RA(vq).

(iii) If γ is a d’Alembert–Chetaev trajectory, we havePvq · ∇t γ̇ = 0, henceκγ(t)2 =
‖RA(vq)‖2 ≤ ‖Pvq · ∇t|t=0α̇‖2 + ‖RA(vq)‖2 = κα(0)2, for all α : (−ε, ε) → M
parametrized by arc length such thatα̇(0) = vq. It then followsκγ(t) = min{κα(0)|α :
(−ε, ε)→ M horizontal withα̇(0) = γ̇(t)}.

(iv) Reciprocally, assume thatκγ(t) = min{κα(0)|α : (−ε, ε)→ M horizontal withα̇(0) =
γ̇(t)}. Let α : (−ε, ε) → M be a d’Alembert–Chetaev trajectory withα(0) = q and
α̇(0) = vq. Thenκγ(t)2 = ‖RA(vq)‖2 + ‖Pγ̇(t) · ∇t γ̇‖2 ≤ κα(0)2 = ‖RA(vq)‖2,
hencePγ̇(t) · ∇t γ̇ = 0. Sincet ∈ domγ was arbitrarily taken, we conclude thatγ is a
d’Alembert–Chetaev trajectory. �

4.3. Conservation of energy

Proof of Proposition 7. Givenvq ∈ C, we haveZ(vq) ∈ TvqC ⇔ λvqvq ∈ Vervq(C) ⇔
vq = κ · λvqvq ∈ Cvq . By the arbitrariness ofvq ∈ C, we conclude thatZ is tangent toC if,
and only if, the following condition holds

(ii ′) (∀vq ∈ C)vq ∈ Cvq .

Assume that condition (ii′) holds, i.e. the constraint is homogeneous. Given V∈ F(M),
let γ : I → M be a d’Alembert–Chetaev trajectory of(M,K,V, C) defined on the interval
I ⊂ R. Then, for allt ∈ I, γ̇ ∈ C, henceγ̇ ∈ Cγ̇ by (ii′). Besides, as∇t γ̇ + grad V(γ) =
RA

V(γ̇) ∈ C⊥γ̇ , we have

d

dt
{K(γ̇)+ V(γ)} = 〈∇t γ̇, γ̇〉 + 〈grad V(γ), γ̇〉 = 〈∇t γ̇ + grad V(γ), γ̇〉

= 〈RA
V(γ̇), γ̇〉 = 0, (15)

so K+ V ◦ τM is constant alonġγ. Sinceγ was arbitrarily taken, it follows that K+ V ◦
τM is a first integral of the GMA vector fieldXV

C , for all V ∈ F(M), i.e. condition (i)
holds.

Reciprocally, assume that condition (ii′) is false, i.e. there existsvq ∈ Csuch thatvq /∈ Cvq .
Then, definingv⊥q := P⊥vqvq ∈ C⊥vq , we havev⊥q #= 0. Take V∈ F(M) such that grad V(q) =
v⊥q +κ·PW ·S(vq); therefore, fromEq. (13)it follows thatRA

V(vq) = −κ·PW ·XV(vq) = v⊥q .
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Thus, by the same computation done in(15):

XA
V(vq)[K + V ◦ τM] = 〈RA

V(vq), vq〉 = 〈v⊥q , v⊥q 〉 > 0

what shows that condition (i) does not hold. �

Proof of Corollary 1. Indeed, ifC is a homogeneous constraint, it follows fromLemma 2,
that, for eachq ∈ M, Cq is a linear subspace ofTqM. Moreover, sinceπC : C → M is
a submersion andCq = π−1

C [q], all subspacesCq, q ∈ M, have the same dimension. We
contend thatq �→ Cq is a smooth distribution onM (i.e. it is locally generated by smooth
sections).

As a matter of fact, letq ∈ M and(e1, . . . , ek) be a basis ofCq. As πC is a submersion,
there exist local smooth sectionsX1, . . . , Xk of πC : C → M, defined on an open set
U ⊂ M with q ∈ U, such thatXi(q) = ei, for 1 ≤ i ≤ k. By continuity, there exists
an open neighborhood̃U ⊂ U of q such that{X1, . . . , Xk} is linearly independent oñU.
Therefore,C|Ũ is generated by the smooth sectionsX1, . . . , Xk. Finally, sinceq ∈ M was
arbitrarily taken, we conclude thatC is locally generated by smooth sections, i.e.C is a
smooth distribution, as asserted. �

Lemma 2. If C ⊂ TM is a closed homogeneous constraint, then, for all q ∈ M, Cq is a
linear subspace ofTqM.

Proof. Let q ∈ M. We have

1. Cq is a closed embedded sub-manifold ofTqM.
Indeed, we have already proven inSection 2.2thatCq is an embedded sub-manifold

of TqM. The hypothesis ofC being closed inTM implies thatCq is closed inTM, hence
in TqM.

2. For eachvq ∈ Cq and for eacht ≥ 0, we havetvq ∈ Cq.
Indeed, for eachvq ∈ C, the fact ofZ being tangent toC implies that there exists

ε(vq) > 0 such that etvq ∈ C for t ∈ (−ε(vq), ε(vq)). Let Tvq := sup{t ∈ R|etvq ∈ C}
andtvq := inf {t ∈ R|etvq ∈ C}. If Tvq < +∞, the fact ofC being closedTM implies that

eTvq vq ∈ C, hence there existst > Tvq such that etvq ∈ C, what is a contradiction; thus,
Tvq = +∞. Similarly, tvq = −∞. This shows that etvq ∈ C for all t ∈ R, i.e. tvq ∈ C
for all t > 0. Again by the fact ofC being closed inTM, it follows thatOq = 0vq ∈ C,
what concludes the proof of the assertion.

3. IdentifyingTOq
(Cq) with a linear subspace ofTqM, we assert thatCq = TOq

(Cq), and
this concludes the proof. As a matter of fact, letwq ∈ Cq and define:

γ : [0,+∞)→ Cq, t �→ twq.

Thenγ is a differentiable curve inCq (at 0, this means that it is differentiable from the
right), since it is differentiable as a curve with values inTqM andCq is an embedded
sub-manifold ofTqM, as we have seen. Thus

wq = Tγ

dt

∣∣∣∣
t=0
∈ TOq

(Cq).
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Sincewq ∈ Cq was arbitrarily taken, this shows thatCq ⊂ TOq
(Cq). ButCq andTOq

(Cq)
are both embedded sub-manifolds ofTqM with the same dimension; thus, ifCq ⊂
TOq

(Cq), Cq must be an open sub-manifold ofTOq
(Cq). As Cq is closed inTqM, it

must be also closed inTOq
(Cq), which is connected, since it is a vector space. Then

Cq = TOq
(Cq), as asserted. �

4.4. The Jacobi–Carathéodory metric tensor

Proof of Theorem 4.

(i) Let g : [a, b] → [0, L] be defined byt �→ ∫ t
a

√
ge(γ̇, γ̇). Then(◦g) : H1(M, [0, L])→

H1(M, [a, b]) is a smooth diffeomorphism, and(◦g−1) = (◦h) (whereh : g−1 :
[0, L] → [a, b]). We assert that the tangent mapTγ(◦h) maps the linear subspace
H1(Cγ̇ , [a, b], γ(a), γ(b)) isomorphically ontoH1(Cγ̃ ′ , [0, L], γ(a), γ(b)). Indeed, given
η ∈ TγH1(M, [a, b], γ(a), γ(b)), by definition we haveη ∈ H1(Cγ̇ , [a, b], γ(a), γ(b))
if, and only if,η(t) ∈ Cγ̇(t) a.e. on [a, b]. Hence,η ∈ H1(Cγ̇ , [a, b], γ(a), γ(b)) if, and
only if, η̃ := T(◦h) · η = η ◦ h satisfies̃η(s) = η ◦ h(s) ∈ Cγ̇(h(s)) a.e. on [0, L]. Since,
for all s ∈ [0, L], γ̃ ′(s) = γ̇(h(s))h′(s) andh′(s) > 0, the assertion will be proved once
we show that, for allvq ∈ C and for allt > 0,Cvq = Ctvq ⊂ TqM. As a matter of fact,
givent > 0, the hypothesis ofC being a cone ensures that

µt : C→ C, vq �→ tvq

is a well defined smooth diffeomorphism. Besides, it is clear thatµt preserves fibers, i.e.
for all q ∈ M,µt(Cq) = Cq. Therefore, for allvq ∈ C, we haveTµt ·Tvq(Cq) = Ttvq(Cq)
and, applying the connectorκTM to both members of this last equation, we conclude
thatCvq = Ctvq , as asserted.

(ii) Let Le : H1(M, [0, L])→ R be the Lagrangian functional induced by Ke, i.e. defined
byγ �→ ∫ b

a
Ke(γ̇). Using the fact that K◦ γ̇+V ◦γ = const. = e, a direct computation

shows that, for allJ ∈ TγH1(M, [a, b]):

dL(γ) · J =
√

2 dLe(γ̃) · J̃ , (16)

whereJ̃ = Tγ(◦h) · J = J ◦ h ∈ Tγ̃H1(M, [0, L]). SinceTγ(◦h) mapsH1(Cγ̇ , [a, b],
γ(a), γ(b)) isomorphically ontoH1(Cγ̃ ′ , [0, L], γ(a), γ(b)), Eq. (16)shows that dL(γ)·
H1(Cγ̇ , [a, b], γ(a), γ(b)) = {O} if, and only if, dLe(γ̃) ·H1(Cγ̃ ′ , [0, L], γ(a), γ(b)) =
{O}. The proof then follows fromTheorem 2. �

4.5. The Liouville’s theorem for the Gibbs–Maggi–Appell vector field

In order to demonstrateTheorem 5, we define a convenient moving frame onC and we
compute the Levi–Civita connection∇C of (C, gC) and the divergence of the GMA vector
fieldXV

C in terms of this moving frame. This will be done in the following definitions and
lemmata.
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Definition 15. Given vq ∈ C, let (X1, . . . , Xn) be an orthonormal frame field of(M, g)
defined on an open neighborhoodU of q ∈ M. Let us define, for 1≤ i ≤ n and for all
wq ∈ CU := π−1

C [U]:

XH
i (wq) := HCwq

(Xi(q)), XV
i (wq) := λCwq

(Xi(q)).

We can assume that(P(vq)·X1(q), . . . ,P(vq)·Xl(q)) is a basis ofCvq , wherel = rk Ver(C).
Then, taking vertical lifts, we conclude that(XV

1 (vq), . . . , X
V
l (vq)) is a basis of Vervq(C). By

continuity,(XV
1 , . . . , X

V
l ) forms a frame field on the vector bundle Ver(C)on a neighborhood

U of vq onC.

Thus, we have constructed a frame fieldF = (X
HC
1 , . . . , X

HC
n ,X

VC
1 , . . . , X

VC
l ) of C on a

neighborhoodU of vq.

Note that this frame field is not orthonormal, except for its “horizontal” part, i.e.
〈XH

i ,X
H
j 〉 = δij , for 1 ≤ i, j ≤ n. Note also that, ifC = TM, we havel = n and the

frame field is orthonormal, and we can takeU = τ−1
M [U].

Notation.For the sake of clearness, we use indicesi, j, k for horizontal vectorsr, s, u for
vertical vectors.

Proof of Corollary 4. Corollary 4is a direct consequence of the next lemma. �

Lemma 3. Using the notation fromDefinition 15, we have, for 1≤ i, j, r, s ≤ n:

[XH
i ,X

H
j ](vq)=HCvq([Xi,Xj](q))+ λCvq{P(vq) · R(Xj(q),Xi(q)) · vq

+P(vq)·PA(vq)·(Xj(q),Xi(q))−P(vq)·PA(vq)·(Xi(q),Xj(q))},
[XV

r ,X
V
s ](vq)= λCvq{P(vq) · FP(vq) · (Xr(q),Xs(q))

−P(vq) · FP(vq) · (Xs(q),Xr(q))},
[XH

i ,X
V
r ](vq)= λCvq{P(vq) · ∇Xi(q)Xr + P(vq) · PP(vq) · (Xi(q),Xr(q))

−P(vq) · FA(vq) · (Xr(q),Xi(q))}, (17)

whereR is the curvature tensor of(M, g).

Proof. We demonstrate only the first formula, since the technique used the compute the
others is the same. Note that, since, for 1≤ i, j ≤ n, XH

i is πC-related toXi andXV
i

is πC-related to zero, we immediately obtainTπC · [XH
i ,X

H
j ](vq) = [Xi,Xj](q), TπC ·

[XV
i ,X

V
j ](vq) = 0 andTπC · [XH

i ,X
V
j ](vq) = 0.

We have, for 1≤ i, j, r, s ≤ n and for allf ∈ F(TM):

(1) XH
i [f ](vq)= Ff(vq) · κ ·XH

i (vq)+ Pf(vq) · TπC ·XH
i (vq)

= Ff(vq) · A(vq) ·Xi(q)+ Pf(vq) ·Xi(q)

and

XV
r [f ](vq)= Ff(vq) · κ ·XV

r (vq)+ Pf(vq) · TπC ·XV
r (vq)

= Ff(vq) · P(vq) ·Xr(q).
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(2) Let γ : (−ε, ε)→ C be a curve onC such that(Tγ/dt)|t=0 = XH
i (vq), and letq(t) :=

πC ◦ γ(t). We have

XH
i [XH

j [f ]](vq)= d

dt

∣∣∣∣
t=0

(XH
j [f ] ◦ γ)

=∇RM
t|t=0{Ff(γ(t)) · A(γ(t)) ·Xj(q(t))+ Pf(γ(t)) ·Xj(q(t))}

= F
2f(vq) · (κ ·XH

i (vq), κ ·XH
j (vq))

+PFf(vq) · (TπC ·XH
i (vq), κ ·XH

j (vq))

+FPf(vq) · (κ ·XH
i (vq),TπC ·XH

j (vq))

+P
2f(vq) · (TπC ·XH

i (vq),TπC ·XH
j (vq))

+Ff(vq) · {PA(vq) · (Xi(q),Xj(q))+ A(vq) · ∇Xi(q)Xj}
+Pf(vq) · ∇Xi(q)Xj.

Hence, byProposition 1, it follows from the last equation that

[XH
i ,X

H
j ][f ](vq)= Ff(vq) · {R(Xj(q),Xi(q)) · vq + PA(vq) · (Xi(q),Xj(q))

−PA(vq) · (Xj(q),Xi(q))+ A(vq) · [Xi,Xj](q)}
+Pf(vq) · [Xi,Xj](q)

and, sincef ∈ F(TM) was arbitrarily taken, we conclude that

TπC · [XH
i ,X

H
j ](vq) = [Xi,Xj](q)

and

P(vq) · κ · [XH
i ,X

H
j ](vq)

= P(vq) · R(Xj(q),Xi(q)) · vq + P(vq) · PA(vq) · (Xi(q),Xj(q))

−P(vq) · PA(vq) · (Xj(q),Xi(q)).

Finally, writing [XH
i ,X

H
j ](vq) = HCvq ·TπC · [XH

i ,X
H
j ](vq)+λCvq ·P(vq) ·κ · [XH

i ,X
H
j ]

(vq), we obtain the asserted formula for [XH
i ,X

H
j ](vq). �

Lemma 4. Denoting by∇C the Levi–Civita connection of(C, gC), and using the notation
from Definition 15, we have, for 1≤ i, j, r, s ≤ n:

∇C
XH
i (vq)

XH
j =HCvq(∇Xi(q)Xj)+ 1

2λ
C
vq
{P(vq) · R(Xj(q),Xi(q)) · vq

−P(vq) · PA(vq) · (Xj(q),Xi(q))+ P(vq) · PA(vq) · (Xi(q),Xj(q))},
∇C
XV
r (vq)

XV
s = 1

2HCvq · A∗(vq) · {F∗P(vq) · (Xr(q),Xs(q))+ F
∗P(vq) · (Xs(q),Xr(q))}

+ λCvq{P(vq) · FP(vq) · (Xr(q),Xs(q))} (18)
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and

〈∇C
XH
i (vq)

XV
r ,X

H
j (vq)〉 = 1

2〈P(vq) ·Xr(q),−P(vq) · R(Xj(q),Xi(q)) · vq − P(vq)
·PA(vq) · (Xi(q),Xj(q))+P(vq)·PA(vq) · (Xj(q),Xi(q))〉,

〈∇C
XH
i (vq)

XV
r ,X

V
s (vq)〉 = 〈P(vq) ·Xs(q),FP(vq) · (Xi(q),Xr(q))+ ∇Xi(q)Xr〉

− 1
2〈P(vq) ·Xs(q),FA(vq) · (Xr(q),Xi(q))〉

+ 1
2〈P(vq) ·Xr(q),FA(vq) · (Xs(q),Xi(q))〉. (19)

Proof. It is a consequence fromLemma 3and from Koszul’s formula:

2〈∇XY,Z〉 =X〈Y,Z〉 + Y〈Z,X〉 − Z〈X, Y〉 − 〈X, [Y,Z]〉
+ 〈Y, [Z,X]〉 + 〈Z, [X, Y ]〉. �

Definition 16. Using the notation fromDefinition 15, let(U, (θ1, . . . , θn)) the dual coframe
field of (U, (X1, . . . , Xn)). For 1≤ i ≤ n, let θ̂i : TU → R be defined by, for allwq ∈ TU:

θ̂i(wq) := θi(q) · wq.

Let S := PC ◦ S|C : C→ TC, whereS is the geodesic spray of(M, g), andV : C→ TC be
defined by, for allvq ∈ C, V(vq) := PC · λvq(−grad V(q)) = λCvq(−grad V(q)).

We have, for allvq ∈ U, S(vq) = PCHvq(vq) = HCvq(vq) =
∑n

j=1 θ̂
j(vq)X

H
j (vq) and

V(vq) = λCvq(−grad V(q)) = −∑n
i=1 θ̂

i(grad V(q))XV
i (vq).

That is to say,XV
C = S+ V, where

S|U =
n∑

j=1

θ̂jXH
j , V|U = −

n∑
i=1

(θ̂i ◦ grad V◦ πC|U)XV
i . (20)

4.5.1. Proof of Liouville’s theorem
We can now demonstrateTheorem 5. The demonstration is a direct consequence of the

following proposition, which gives the expression of the divergence of the GMA vector
field, with respect to the Riemannian volume.

Proposition 9. For all vq ∈ C, divXV
C is given by the following formula:

divXV
C (vq) = trA(vq)+ 〈tr F

∗P(vq)|Cvq×Cvq
, RA

V(vq)〉. (21)

Proof. We can assume that, at the pointq ∈ M, the orthonormal frame field(U, (X1, . . . ,

Xn)) is adapted toCvq , i.e.(X1(q), . . . , Xl(q)) is an orthonormal basis ofCvq and(Xl+1(q),

. . . , Xn(q)) is an orthonormal basis ofC⊥vq . Then, we have

divXV
C (vq) =

n∑
i=1

〈XH
i (vq),∇CXH

i (vq)
XV
C 〉 +

l∑
r=1

〈XV
r (vq),∇CXV

r (vq)
XV
C 〉. (22)



414 G. Terra, M.H. Kobayashi / Journal of Geometry and Physics 49 (2004) 385–417

We now useEq. (20) and Lemma 4to compute the terms on the second member of
(22). �

Lemma 5. For all q ∈ M, vq ∈ Cq, wq ∈ TqM:

(i) FP(vq) = −FP⊥(vq) andPP(vq) = −PP⊥(vq);
(ii) P(vq) ◦ {FP(vq) · wq} = {FP(vq) · wq} ◦ P⊥(vq) and P(vq) ◦ {PP(vq) · wq} =
{PP(vq) · wq} ◦ P⊥(vq);

(iii) P(vq)◦{FA(vq)·wq} = −{FP(vq)·wq}◦Avq andP(vq)◦{PA(vq)·wq} = −{PP(vq)·
wq} ◦ Avq .

Proof. The three assertions follow, respectively, by derivation of the identities(∀vq ∈
C)P(vq)+ P⊥(vq) = idTqM, P(vq) ◦ P⊥(vq) = 0 andP(vq) ◦ A(vq) = 0. �

Proof of Theorem 5. By Eq. (21), it is clear that divXV
C is identically null onC, for all

potentials V ∈ F(M), if conditions (i) and (ii) are satisfied. Reciprocally, assume that
divXV

C is identically null onC for all V ∈ F(M). Let us fixvq ∈ C. As {grad V(q)|V ∈
F(M)} = TqM, and sinceP⊥(vq) : TqM → TqM is ontoC⊥vq , there exists V∈ F(M)

such thatP⊥(vq) · grad V(q) = κ · PW · S(vq), i.e. such thatRA
V(vq) = 0. Thus, for this

V, we conclude fromEq. (21)that divXV
C (vq) = 0 implies trA(vq) = 0. It then follows

that

divXV
C (vq) = 〈tr F

∗P(vq)|Cvq×Cvq
, RA

V(vq)〉 (23)

and this expression must be zero for all V∈ F(M). Again by the fact that{grad V(q)|V ∈
F(M)} = TqM and thatP⊥(vq) : TqM→ TqM is ontoC⊥vq , we conclude that{RA

V(vq)|V ∈
F(M)} = C⊥vq . Hence, it follows from(23) thatP⊥(vq) · tr F

∗P(vq) = 0. We contend that

P⊥(vq) · tr F
∗P(vq) = tr F

∗P(vq); asvq ∈ C was arbitrarily taken, this will achieve the
demonstration, since conditions (i) and (ii) will be verified. Indeed, for allq ∈ M, vq ∈ Cq,
wq, zq, sq ∈ Cvq , we have

〈F∗P(vq) · (wq, zq), sq〉 = 〈zq,FP(vq) · (wq, sq)〉
zq∈Cvq= 〈zq,P(vq)FP(vq) · (wq, sq)〉

Lemma 5= 〈zq,FP(vq) · (wq,P
⊥(vq) · sq)〉

sq∈Cvq= 0,

what shows that, for allvq ∈ C, F
∗P(vq)|Cvq×Cvq

: Cvq × Cvq → C⊥vq . �

Proof of Corollary 5. Indeed, letq ∈ M such thatCq #= ∅ and letBCq be the second
fundamental form ofCq. Givenvq ∈ Cq andXvq, Yvq ∈ TvqCq, we assert that

BCq (Xvq, Yvq)= 1
2HCvq · A∗(vq) · {F∗P(vq) · (κ ·Xvq, κ · Yvq)
+F
∗P(vq) · (κ · Yvq, κ ·Xvq)}.
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As a matter of fact, using the notation fromDefinition 15, it follows from (18) that, for
1≤ r, s ≤ n:

BCq (X
V
r (vq),X

V
s (vq))= PH · ∇CXV

r (vq)
XV
s

= 1
2HCvq · A∗(vq) · {F∗P(vq) · (Xr(q),Xs(q))

+F
∗P(vq) · (Xs(q),Xr(q))}.

Therefore, for allvq ∈ Cq, trBCq (vq) = HCvq ·A∗(vq)·tr F
∗P(vq)|Cvq×Cvq

, hence trBCq (vq) =
0 if tr F

∗P(vq)|Cvq×Cvq
= 0. �

Proof of Proposition 8. Let γ be a d’Alembert–Chetaev trajectory of(M,K,0, C), i.e. for
all t ∈ domγ, we have

γ̈(t) = PC · S(γ̇(t)) = S(γ̇(t)).
Hence

∇Ct γ̈ = ∇Ct (S ◦ γ̇).
Let us fix t ∈ domγ and letp := γ(t) ∈ M, wp := γ̇(t) ∈ C. Let F = (XH

1 , . . . , X
H
n ,

XV
1 , . . . , X

V
l ) be a frame field onC on an open neighborhoodU of wp in C, like in

Definition 15. As usual, we can assume that, on the pointp ∈ M, (X1(p), . . . , Xn(p))

is an orthonormal frame adapted toCwp , so that(XV
1 (wp), . . . , X

V
l (wp)) is an orthonor-

mal basis of VerCwp
. Let (U, (θ1, . . . , θn)) be the dual coframe of(U, (X1, . . . , Xn)), as in

Definition 16. We have

S|U =
n∑

j=1

θ̂jXH
j . (24)

Therefore

∇Ct γ̈ =
n∑
i=1

θ̂i(wp)∇CXH
i (wp)

S. (25)

Using Lemma 4andEq. (24)to compute the second member of(25), we conclude that
∇Ct γ̈ = 0 if, and only if, 〈κ · PW · S(wp),Xk(p)〉 = 0 for 1 ≤ k ≤ n, i.e. if, and only if,
κ ·PW ·S(wp) = 0, what is equivalent toPW ·S(wp) = 0. Sincet ∈ domγ was arbitrarily
taken, we have shown thatγ̇ is a geodesic of(C, gC) if, and only if, PW · S(γ̇(t)) = 0
for all t ∈ domγ. As γ is a d’Alembert–Chetaev trajectory, this is equivalent toγ̈(t) =
PC · S(γ̇(t)) = S(γ̇(t)) for all t ∈ domγ. Thus,γ̇ is a geodesic of(C, gC) if, and only if,γ
is a geodesic of(M, g), as asserted. �
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